1)\(=\left|\sqrt{3}-3\right|+\sqrt{\left(\sqrt{3}-1\right)^2}=3-\sqrt{3}+\left|\sqrt{3}-1\right|=3-\sqrt{3}+\sqrt{3}-1=2\)
2: \(=\sqrt{5}+2-\sqrt{5}=2\)
1)\(=\left|\sqrt{3}-3\right|+\sqrt{\left(\sqrt{3}-1\right)^2}=3-\sqrt{3}+\left|\sqrt{3}-1\right|=3-\sqrt{3}+\sqrt{3}-1=2\)
2: \(=\sqrt{5}+2-\sqrt{5}=2\)
M= \(\dfrac{3}{2}\sqrt{32x}-\dfrac{1}{3}\sqrt{18x}+\dfrac{2}{5}\sqrt{50x}-4\sqrt{2x}\) (x lớn hơn hoặc bằng 0)
giải chi tiết giúp mk vớiiiii ạ
Câu1:\(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)- \(\dfrac{\sqrt{6}-3}{\sqrt{2}-\sqrt{3}}\)
Câu2:\(\dfrac{\sqrt{2}}{\sqrt{3}-1}-\sqrt{\dfrac{3}{2}}\)
giải cụ thể giúp mk vớiiiii ạ
a) √(√3 - 3)2 + √4 - 2√3
b)\(\dfrac{1}{\sqrt{5}-2}\)+ \(\dfrac{\sqrt{10}-\sqrt{5}}{1-\sqrt{2}}\)
giải giúp mk 2 câu này vớiiiii ạ
f)\(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)- \(\dfrac{\sqrt{6}-3}{\sqrt{2}-\sqrt{3}}\)
g)\(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right).\left(\sqrt{2}-3\sqrt{0,4}\right)\)
giải chi tiết cụ thể giúp mk với ạ
(1) thực hiện phép tính:
a) \(\sqrt{5}.\left(\sqrt{20}-3\right)+\sqrt{45}\)
b) \(\sqrt{\left(5-\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
c) \(\dfrac{2}{\sqrt{5}+1}-\dfrac{2}{3-\sqrt{5}}\)
giúp mk vs ạ mai mk học rồi
Rút gọn biểu thức
M=\(\dfrac{3}{2}\sqrt{32x}-\dfrac{1}{3}\sqrt{18x}+\dfrac{2}{5}\sqrt{50x}-4\sqrt{2x}\) (x ≥ 0)
giải chi tiết giúp mk vớiiiiii ạ
Thực hiện từng bước của phép tính:
1.\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
2.\(\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
3.\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
4.\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
Tìm điều kiện có nghĩa:
1) \(\sqrt{\dfrac{2}{3-2a}}\)
2) \(\sqrt{\dfrac{-1}{2a-5}}\)
3) \(\sqrt{\dfrac{-2}{3-5a}}\)
4) \(\dfrac{1}{\sqrt{-3a}}\)
5) \(\sqrt{\dfrac{-a}{5}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
rút gọn
g, \(\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right).\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\) h,\(\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\sqrt{3\dfrac{1}{3}}\right).\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\dfrac{1}{5}}\right)\)