Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Xuân Khải
Xem chi tiết
Lê Ng Hải Anh
Xem chi tiết
Vo Thanh Anh
29 tháng 6 2018 lúc 7:53

\(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\)\(\left(a^8+b^8\right)\left(a^4+b^4\right)\)

\(\Leftrightarrow a^{10}b^2+a^2b^{10}\ge a^8b^4+a^4b^8\)

\(\Leftrightarrow a^8+b^8\ge a^6b^2+a^2b^6\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a^6-b^6\right)\ge0\)

Vì a^2-b^2 va a^6-b^6 cùng dấu nên ta có điều phải chứng minh.

Lê Ng Hải Anh
29 tháng 6 2018 lúc 11:03

bn có thể giải rõ hơn ko?

Quỳnh Anh
Xem chi tiết
Trần Minh Hoàng
15 tháng 1 2021 lúc 19:17

Bất đẳng thức cần chứng minh tương đương:

\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)

\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).

Vậy ta có đpcm.

 

Trần Minh Hoàng
15 tháng 1 2021 lúc 19:52

\(a^8+b^8-a^6b^2-a^2b^6=\left(a^8-a^6b^2\right)+\left(b^8-a^2b^6\right)=a^6\left(a^2-b^2\right)+b^6\left(b^2-a^2\right)=\left(a^6-b^6\right)\left(a^2-b^2\right)\) nên suy ra được như vậy Quỳnh Anh

 

ssjs9
Xem chi tiết
Hoài Phạm
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
phantuananh
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 7 2016 lúc 3:30

1) Ta sẽ chứng minh bằng biến đổi tương đương như sau : 

Ta có : \(\left(x^{10}+y^{10}\right)\left(x^2+y^2\right)\ge\left(x^8+y^8\right)\left(x^4+y^4\right)\left(1\right)\)

\(\Leftrightarrow x^{12}+x^{10}y^2+y^{10}x^2+y^{12}\ge x^{12}+x^8y^4+y^8x^4+y^{12}\)

\(\Leftrightarrow x^{10}y^2+y^{10}x^2\ge x^8y^4+y^8x^4\)

\(\Leftrightarrow x^2y^2\left(x^8+y^8-x^6y^2-x^2y^6\right)\ge0\)

\(\Leftrightarrow x^2y^2\left[\left(x^8-x^6y^2\right)+\left(y^8-x^2y^6\right)\right]\ge0\)

\(\Leftrightarrow x^2y^2\left(x^6-y^6\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow x^2y^2\left(x^3-y^3\right)\left(x^3+y^3\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow x^2y^2\left(x-y\right)^2\left(x+y\right)^2\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)\ge0\)(2)

Ta thấy : \(x^2-xy+y^2=\frac{\left(x^2-2xy+y^2\right)+x^2+y^2}{2}=\frac{\left(x-y\right)^2+x^2+y^2}{2}\ge0\)

\(x^2+xy+y^2=\frac{\left(x+y\right)^2+x^2+y^2}{2}\ge0\)  ; \(x^2y^2\left(x-y\right)^2\left(x+y\right)^2\ge0\)

Do đó (2) luôn đúng.

Vậy (1) được chứng minh. 

Big City Boy
Xem chi tiết
Trần Minh Hoàng
10 tháng 3 2021 lúc 23:15

Áp dụng bất đẳng thức \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) ta có:

\(8\left(a^4+b^4\right)\ge4\left(a^2+b^2\right)^2=\left[2\left(b^2+c^2\right)\right]^2\ge\left(a+b\right)^4\).

Đức Anh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 8:48

1: =>4a^3+4b^3-a^3-3a^2b-3ab^2-b^3>=0

=>a^3-a^2b-ab^2+b^3>=0

=>(a+b)(a^2-ab+b^2)-ab(a+b)>=0

=>(a+b)(a-b)^2>=0(luôn đúng)

2: \(a^4+b^4=\dfrac{a^4}{1}+\dfrac{b^4}{1}>=\dfrac{\left(a^2+b^2\right)^2}{1}=\dfrac{1}{2}\left(\dfrac{a^2}{1}+\dfrac{b^2}{1}\right)^2\)

=>\(a^4+b^4>=\dfrac{1}{2}\left(\dfrac{\left(a+b\right)^2}{2}\right)^2=\dfrac{\left(a+b\right)^4}{8}\)