Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn phương ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 21:25

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 21:48

c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)

Thành Nam
Xem chi tiết
Gấuu
7 tháng 8 2023 lúc 22:17

\(\dfrac{1}{M}=\dfrac{\sqrt{x}+2}{\sqrt{x}+5}\)

\(B=\dfrac{\sqrt{x}+2}{\sqrt{x}+5}-\dfrac{\sqrt{x}}{27}=\dfrac{27\sqrt{x}+54-x-5\sqrt{x}}{27\left(\sqrt{x}+5\right)}\)\(=\dfrac{-x+22\sqrt{x}+54}{27\left(\sqrt{x}+5\right)}\)

\(\Rightarrow\sqrt{x}.27B+135B=-x+22\sqrt{x}+54\)

\(\Leftrightarrow x+\sqrt{x}\left(27B-22\right)+135B-54=0\) (1)

Coi PT (1) là phương trình bậc 2 ẩn \(\sqrt{x}\)

PT (1) có nghiệm không âm \(\Leftrightarrow\left\{{}\begin{matrix}\Delta=729B^2-1728B+700\ge0\\S=22-27B\ge0\\P=135B-54\ge0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{2}{5}\le B\le\dfrac{14}{27}\)

Suy ra \(max_B=\dfrac{14}{27}\Leftrightarrow x=16\)

A làm tương tự 

Xanh đỏ - OhmNanon
Xem chi tiết
Đỗ Tuệ Lâm
5 tháng 3 2022 lúc 5:48

em tham khảo

undefined

Đỗ Thùy Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 0:14

a: Ta có: \(A=\left(1-\dfrac{2\sqrt{x}-2}{x-1}\right):\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{x\sqrt{x}+1}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{x-1}:\dfrac{x-\sqrt{x}+1-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}\)

Big City Boy
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 10 2021 lúc 7:21

Áp dụng BĐT Cauchy–Schwarz ta được:

\(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2018}+\sqrt{2017}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2018}+\sqrt{2017}=y\)

Dấu \("="\Leftrightarrow\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vô.lí\right)\)

Vậy đẳng thức ko xảy ra hay \(x>y\)

1122
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2023 lúc 19:24

1:

\(A=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

3: A nguyên

=>-5căn x-15+17 chia hết cho căn x+3

=>căn x+3 thuộc Ư(17)

=>căn x+3=17

=>x=196

1122
4 tháng 8 2023 lúc 10:09
Kamado Tanjirou ๖ۣۜ( ๖ۣۜ...
Xem chi tiết
Nguyễn Hoàng Minh
28 tháng 10 2021 lúc 7:43

\(a,Q=\dfrac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{x}\left(x>0;x\ne9\right)\\ Q=\dfrac{2x+32}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{x}=\dfrac{2x+32}{x\left(\sqrt{x}+3\right)}\)

 

Tran Nguyen Linh Chi
Xem chi tiết
Trên con đường thành côn...
25 tháng 8 2021 lúc 21:21

undefined

Kamado Tanjirou ๖ۣۜ( ๖ۣۜ...
Xem chi tiết
Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 9:53

\(a,A=\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{x-2-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)