chứng minh đa thức sau không có nghiệm:
B=x10-x7+x4-x+1
chứng tỏ rằng đa thức sau không có nghiệm: A(x) = x2 - 4x 7
Tìm nghiệm của đa thức sau: P (x) = x4 x3 x 1
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
chứng tỏ đa thức sau không có nghiệm: A(x)= x2-4x+7
Tìm nghiệm của đa thức sau: P (x) = x4 x3 x 1
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
Cho đa thức: P x = 1 + x 5 + 1 + x 6 + 1 + x 7 + 1 + x 8 + 1 + x 9 + 1 + x 10 . Tìm hệ số của số hạng chứa x 4 .
A. 461
B. 462
C. 460
D. 463
Cho đa thức: P x = 1 + x 5 + 1 + x 6 + 1 + x 7 + 1 + x 8 + 1 + x 9 + 1 + x 10
Tìm hệ số của số hạng chứa x 4
A. 461
B. 462
C. 460
D. 463
Chứng minh đa thức P(x)=x4+2x2+3 không có nghiệm
\(P\left(x\right)=x^4+2x^2+3=x^4+2x^2+1+2=\left(x^2+1\right)^2+2\ge2>0\forall x\)
Đặt P(x)=0
Vì \(x^4>=0\)
và \(2x^2>=0\)
nên P(x)=x4+2x2+3>=3>0
=>P(x) vô nghiệm
Chứng tỏ các đa thức sau không có nghiệm:
a) x2 +1; b) 2x2 + 1; c) x4 + 2.
a: Vì \(x^2+1>0\forall x\)
nên đa thức này vô nghiệm
b: \(2x^2+1>0\forall x\)
nên đa thức này vô nghiệm
c: \(x^4+2>0\forall x\)
nên đa thức này vô nghiệm
Mũ chẵn lớn hơn bằng 0 mà cộng thêm 1 số không âm nữa nên các đa thức trên luôn lớn hơn 0
Mình chứng minh với các đa thức mặc định giá trị bằng 0 nhé
Các số có mũ chẵn thì đều lớn hơn hoặc =0 nên khi cộng thêm một số lớn hơn 0 thì biểu thức sẽ lớn hơn 0 nên các đa thức trên không có nghiệm khi nhận giá trị =0
chứng tỏ rằng đa thức sau không có nghiệm: A(x) = x2 - 4x 7Tìm nghiệm của đa thức sau: P (x) = x4 x3 x 1
giải giùm đi mình tick cho
x4+x3+x+1 = x3. (x+1) + (x+1) = (x3 + 1)(x+1) = (x+1)2.(x2 - x +1) = 0
=> x + 1 = 0 => x = -1
Vì x2 - x + 1 = (x2 - 2.x .1/2 + 1/4) + 3/4 = (x - 1/2)2 + 3/4 >0 + 3/4 = 3/4
Vậy đa thức trên có nghiệm là x = -1
Thu gọn phân thức: M = x 10 − x 8 − x 7 + x 6 + x 4 − x 2 − x + 1 x 30 + x 24 + x 18 + x 12 + x 6 + 1 .
Bài 3 (1,75 điểm): Cho hai đa thức: A(x) = 3x6+ 3x3 - 3x3 - 3x6 - x3 + x4 + 2023 B(x) = x3 + x2 -1 a. Thu gọn và sắp xếp đa thức A(x) theo luỹ thừa giảm của biến. b. Tính A(x) + B(x) c. Biết H(x) – A(x) = B(x). Chứng minh đa thức H(x) không có nghiệm Bài 4 (3điểm): Cho ABC vuông tại A. Tia phân giác của góc ABC cắt AC ở D.Kẻ DH BC a. Chứng minh ABD = HBD b. Gọi I là giao điểm của 2 tia BA và HD. Chứng minh IDC cân. c. Chứng minh: AD +AI > 1 2 IC
ét o ét cíu vs mn
a. Tìm nghiệm của đa thức A(x)= 6-2x
b. Cho đa thức P(x)= x4+2x2+1
1. Tính P(1),P= \(\left(\dfrac{-1}{2}\right)\)
2. Chứng tỏ rằng đa thức P(x) không có nghiệm
a) A(x) = 0 ⇔ 6 - 2x = 0 ⇔ x = 3
Nghiệm của đa thức là x = 3
b)1. P(1) = \(1^4+2.1^2+1\) = 4
P(\(-\dfrac{1}{2}\)) = \(\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1\) = \(\dfrac{25}{16}\)
Ta có: P(x) = \(\left(x^2+1\right)^2\)
Vì \(\left(x^2+1\right)^2\) ≥ 0
Nên P(x) = 0 khi \(x^2+1=0\) ⇔ \(x^2=-1\) (vô lý)
Vậy P(x) không có nghiệm
a) Đặt A(x)=0
\(\Leftrightarrow6-2x=0\)
\(\Leftrightarrow2x=6\)
hay x=3
Vậy: x=3 là nghiệm của đa thức A(x)
b)
1: Thay x=1 vào đa thức P(x), ta được:
\(P\left(1\right)=1^4+2\cdot1^2+1=1+2+1=4\)
Thay \(x=-\dfrac{1}{2}\) vào đa thức P(x), ta được:
\(P\left(-\dfrac{1}{2}\right)=\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+1=\dfrac{1}{16}+\dfrac{1}{2}+1=\dfrac{25}{16}\)