Giải phương trình : \(\sqrt{2}\left(2cos^2x-3sin2x\right)=4cosx.sin2x+2\left(sinx-cosx\right)\)
Giải phương trình:
\(\sqrt{2}cosx-3sin2x=4cosx.sin2x+2\left(sinx-cosx\right)\)
Giải phương trình:
\(2cos^2x+2\sqrt{3}sinxcosx+1=3\left(sinx+\sqrt{3}cosx\right)\)
Ta có : \(2cos^2x+2\sqrt{3}sinx.cosx+1=3\left(sinx+\sqrt{3}cosx\right)\)
\(\Leftrightarrow3cos^2x+sin^2x+2\sqrt{3}sinxcosx=3\left(sinx+\sqrt{3}cosx\right)\)
\(\Leftrightarrow\left(\sqrt{3}cosx+sinx\right)^2=3\left(\sqrt{3}cosx+sinx\right)\)
\(\Leftrightarrow\left(\sqrt{3}cosx+sinx\right)\left(\sqrt{3}cosx+sinx-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3}cosx+sinx=0\\\sqrt{3}cos+sinx=3\end{matrix}\right.\)
Thấy : \(-1\le sinx;cosx\le1\Rightarrow\sqrt{3}cosx+sinx\le1+\sqrt{3}< 3\)
Do đó : \(\sqrt{3}cosx+sinx=0\) \(\Leftrightarrow\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx=0\)
\(\Leftrightarrow sin\dfrac{\pi}{3}.cosx+cos\dfrac{\pi}{3}sinx=0\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow x+\dfrac{\pi}{3}=k\pi\Leftrightarrow x=\dfrac{-\pi}{3}+k\pi\) ( k thuộc Z )
Vậy ...
giải phương trình sau
\(\sqrt{3}sinx+cosx+2cos\left(x-\dfrac{\pi}{3}\right)=2\)
\(\Leftrightarrow2\left(\dfrac{1}{2}cosx+\dfrac{\sqrt{3}}{2}sinx\right)+2cos\left(x-\dfrac{\pi}{3}\right)=2\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)+cos\left(x-\dfrac{\pi}{3}\right)=1\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\pi}{3}+k2\pi\\x=k2\pi\end{matrix}\right.\)
giải phương trình đối với sin x và cosx
1) 3sinx-4cosx=5
2) \(\sqrt{3}cos2x+sin2x+2sin\left(2x-\frac{\pi}{6}\right)=2\sqrt{2}\)
3) \(cosx+\sqrt{3}sinx+2cos\left(2x+\frac{\pi}{3}\right)=0\)
4) \(2cos\left(2x+\frac{\pi}{6}\right)+4sinxcosx-1=0\)
5) \(\sqrt{3}cos5x-2sin3x.cos2x-sinx=0\)
Giải phương trình lượng giác
1 , \(\sin2x-2\sqrt{2}\left(sinx+cosx\right)=5\)
2 , \(1+sin\frac{x}{2}sinx-cos\frac{x}{2}sin^2x=2cos^2\left(\frac{\pi}{4}-\frac{x}{2}\right)\)
1.
\(\Leftrightarrow sin2x-4sin\left(x+\frac{\pi}{4}\right)=5\)
Do \(\left\{{}\begin{matrix}sin2x\le1\\-4sin\left(x+\frac{\pi}{4}\right)\le4\end{matrix}\right.\) với mọi x
\(\Rightarrow sin2x-4sin\left(x+\frac{\pi}{4}\right)\le5\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}sin2x=1\\sin\left(x+\frac{\pi}{4}\right)=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow x=-\frac{3\pi}{4}+k2\pi\)
2.
\(\Leftrightarrow1-2cos^2\left(\frac{\pi}{4}-\frac{x}{2}\right)+sin\frac{x}{2}sinx-cos\frac{x}{2}sin^2x=0\)
\(\Leftrightarrow-cos\left(\frac{\pi}{2}-x\right)+sinx\frac{x}{2}sinx-cosx\frac{x}{2}sin^2x=0\)
\(\Leftrightarrow-sinx+sin\frac{x}{2}sinx-cos\frac{x}{2}sin^2x=0\)
\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1-cos\frac{x}{2}sinx\right)=0\)
\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1-2cos^2\frac{x}{2}sin\frac{x}{2}\right)=0\)
\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1-2sin\frac{x}{2}\left(1-sin^2\frac{x}{2}\right)\right)=0\)
\(\Leftrightarrow sinx\left(2sin^3\frac{x}{2}-sin\frac{x}{2}-1\right)=0\)
\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1\right)\left(2sin^2\frac{x}{2}+2sin\frac{x}{2}+1\right)=0\)
\(\Leftrightarrow...\)
giải các phương trình sau: ( pt bậc nhất đối với sinx và cosx)
a, \(sinx+cosx=\sqrt{2}sin5x\)
b, \(\sqrt{3}sin2x+sin\left(\frac{\pi}{2}+2x\right)=1\)
c, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx+\sqrt{3}-1=0\)
d, \(3sin^2x+\sqrt{3}sin2x=3\)
e, \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)
f,\(8cos2x=\frac{\sqrt{3}}{sinx}+\frac{1}{cosx}\)
g, \(cosx-\sqrt{3}sinx=2cos\left(\frac{\pi}{3}-x\right)\)
h, \(sin5x-cos5x=\sqrt{2}cos13x\)
i, \(\left(3cosx-4sinx+6\right)^2-9cosx+12sinx-16=0\)
\( a){\mathop{\rm sinx}\nolimits} + \cos x = \sqrt 2 \sin 5x\\ \Leftrightarrow \sqrt 2 .\sin \left( {x + \dfrac{\pi }{4}} \right) = \sqrt 2 .\sin 5x\\ \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = \sin 5x\\ \Leftrightarrow \left[ \begin{array}{l} x + \dfrac{\pi }{4} = 5x + k2\pi \\ x + \dfrac{\pi }{4} = \pi - 5x + k2\pi \end{array} \right.\left( {k \in \mathbb {Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{{16}} + \dfrac{{k\pi }}{2}\\ x = \dfrac{\pi }{8} + \dfrac{{k\pi }}{3} \end{array} \right.\left( {k \in \mathbb{Z}} \right) \)
\( b)\sqrt 3 \sin 2x + \sin \left( {\dfrac{\pi }{2} + 2x} \right) = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + \sin \dfrac{\pi }{2}\cos 2x + \cos \dfrac{\pi }{2}\sin 2x = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + 1.\cos 2x + 0.\sin 2x = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + \cos 2x - 1 = 0\\ \Leftrightarrow 2\sqrt 3 {\mathop{\rm sinxcosx}\nolimits} + 1 - 2{\sin ^2}x - 1 = 0\\ \Leftrightarrow \sqrt 3 {\mathop{\rm sinxcosx}\nolimits} - si{n^2}x = 0\\ \Leftrightarrow {\mathop{\rm sinx}\nolimits} \left( {\sqrt 3 \cos x - {\mathop{\rm sinx}\nolimits} } \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} {\mathop{\rm sinx}\nolimits} = 0\\ \sqrt 3 \cos x - {\mathop{\rm sinx}\nolimits} = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ \sin \left( {\dfrac{\pi }{3} - x} \right) = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ \dfrac{\pi }{3} - x = k\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ x = \dfrac{\pi }{3} - k\pi \end{array} \right. \)
Nhiều quá @@ Tách ra đi ><
\( d)3{\sin ^2}x + \sqrt 3 \sin 2x = 3\\ \Leftrightarrow 2{\sin ^2}x + 2\sqrt 3 {\mathop{\rm sinxcosx}\nolimits} - 3 = 0\\ *sinx = 0 \Rightarrow \text{không là nghiệm phương trình}\\ *sin \ne 0\\ 2 + 2\sqrt 3 \cot x - 3\left( {1 + {{\cot }^2}x} \right) = 0\\ \Leftrightarrow 3{\cot ^2}x - 2\sqrt 3 \cot x + 1 = 0\\ \Leftrightarrow \cot x = \dfrac{{\sqrt 3 }}{3} \Rightarrow x = \dfrac{\pi }{3} + k\pi \)
giải phương trình
1.\(2sin15x+\sqrt{3}cos5x+sin5x=0\)
2.\(\left(cos2x-\sqrt{3}sin2x\right)-\sqrt{3}sinx-cosx+4=0\)
3.\(cos7x-sin5x=\sqrt{3}\left(cos5x-sin7x\right)\)
4.\(\frac{cosx-2sinx.cosx}{2cos^2x+sinx-1}=\sqrt{3}\)
1.
\(\Leftrightarrow sin5x+\sqrt{3}cos5x=-2sin15x\)
\(\Leftrightarrow\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x=-sin15x\)
\(\Leftrightarrow sin\left(5x+\frac{\pi}{3}\right)=sin\left(-15x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=-15x+k2\pi\\5x+\frac{\pi}{3}=\pi+15x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{60}+\frac{k\pi}{10}\\x=-\frac{\pi}{15}+\frac{k\pi}{5}\end{matrix}\right.\)
2.
\(\Leftrightarrow\left(\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x\right)+\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=2\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+sin\left(x+\frac{\pi}{6}\right)=2\)
Do \(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)\le1\\sin\left(x+\frac{\pi}{6}\right)\le1\end{matrix}\right.\) với mọi x
\(\Rightarrow sin\left(2x-\frac{\pi}{6}\right)+sin\left(x+\frac{\pi}{6}\right)\le2\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)=1\\sin\left(x+\frac{\pi}{6}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\frac{\pi}{3}+k2\pi\)
3.
\(\Leftrightarrow cos7x+\sqrt{3}sin7x=sin5x+\sqrt{3}cos5x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin7x+\frac{1}{2}cos7x=\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x\)
\(\Leftrightarrow sin\left(7x+\frac{\pi}{6}\right)=sin\left(5x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}7x+\frac{\pi}{6}=5x+\frac{\pi}{3}+k2\pi\\7x+\frac{\pi}{6}=\frac{2\pi}{3}-5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{\pi}{24}+\frac{k\pi}{6}\end{matrix}\right.\)
giải phương trình: \(\sqrt{3}\left(cosx+2tanx\right)+sinx=\frac{3}{cosx^2}\)
ĐKXĐ: ...
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx=\dfrac{3}{2}\left(1+tan^2x\right)-\sqrt{3}tanx\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=\dfrac{3}{2}\left(tanx-\dfrac{\sqrt{3}}{3}\right)^2+1\)
\(\left\{{}\begin{matrix}sin\left(x+\dfrac{\pi}{3}\right)\le1\\\dfrac{3}{2}\left(tanx-\dfrac{\sqrt{3}}{3}\right)^2+1\ge1\end{matrix}\right.\)
Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}sin\left(x+\dfrac{\pi}{3}\right)=1\\tanx=\dfrac{\sqrt{3}}{3}\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{\pi}{6}+k2\pi\)
\(1.\left(sinx+cosx\right)^3+sinxcosx-1=0\)
\(2.\left(sinx+cosx\right)^4-3sin2x-1=0\)
\(3.sin^3x+cos^3x+2\left(sinx+cosx\right)-3sin2x=0\)
\(4.\left(sinx-cosx\right)^3=1+sinxcosx\)
5.\(sinx+cosx+2+tanx+cotx+\frac{1}{sinx}+\frac{1}{cosx}=0\)
1.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
Pt trở thành:
\(t^3+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow2t^3+t^2-3=0\)
\(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\)
\(\Leftrightarrow t=1\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sin2x=2sinx.cosx=t^2-1\end{matrix}\right.\)
Pt trở thành:
\(t^4-3\left(t^2-1\right)-1=0\)
\(\Leftrightarrow t^4-3t^2+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t^2=1\\t^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}1+sin2x=1\\1+sin2x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sin2x=1\end{matrix}\right.\)
\(\Leftrightarrow...\)
3.
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)+2\left(sinx+cosx\right)-6sinx.cosx=0\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
Pt trở thành:
\(t\left(1-\frac{t^2-1}{2}\right)+2t-3\left(t^2-1\right)=0\)
\(\Leftrightarrow-t^3-6t^2+7t+6=0\)
Nghiệm của pt bậc 3 này rất xấu, chắc bạn ghi ko đúng đề bài