Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Linh Chi

Giải phương trình:

\(2cos^2x+2\sqrt{3}sinxcosx+1=3\left(sinx+\sqrt{3}cosx\right)\)

 

Khôi Bùi
17 tháng 7 2021 lúc 22:15

Ta có : \(2cos^2x+2\sqrt{3}sinx.cosx+1=3\left(sinx+\sqrt{3}cosx\right)\) 

\(\Leftrightarrow3cos^2x+sin^2x+2\sqrt{3}sinxcosx=3\left(sinx+\sqrt{3}cosx\right)\) 

\(\Leftrightarrow\left(\sqrt{3}cosx+sinx\right)^2=3\left(\sqrt{3}cosx+sinx\right)\) 

\(\Leftrightarrow\left(\sqrt{3}cosx+sinx\right)\left(\sqrt{3}cosx+sinx-3\right)=0\) 

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3}cosx+sinx=0\\\sqrt{3}cos+sinx=3\end{matrix}\right.\) 

Thấy : \(-1\le sinx;cosx\le1\Rightarrow\sqrt{3}cosx+sinx\le1+\sqrt{3}< 3\) 

Do đó : \(\sqrt{3}cosx+sinx=0\)  \(\Leftrightarrow\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx=0\)

\(\Leftrightarrow sin\dfrac{\pi}{3}.cosx+cos\dfrac{\pi}{3}sinx=0\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow x+\dfrac{\pi}{3}=k\pi\Leftrightarrow x=\dfrac{-\pi}{3}+k\pi\) ( k thuộc Z ) 

Vậy ... 


Các câu hỏi tương tự
Ngô Thành Chung
Xem chi tiết
minh hy
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Nguyên Nguyên
Xem chi tiết
tran duc huy
Xem chi tiết
Nguyễn thị Phụng
Xem chi tiết
Nguyễn Sinh Hùng
Xem chi tiết
Hoàng Anh
Xem chi tiết