1.
\(\Leftrightarrow sin2x-4sin\left(x+\frac{\pi}{4}\right)=5\)
Do \(\left\{{}\begin{matrix}sin2x\le1\\-4sin\left(x+\frac{\pi}{4}\right)\le4\end{matrix}\right.\) với mọi x
\(\Rightarrow sin2x-4sin\left(x+\frac{\pi}{4}\right)\le5\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}sin2x=1\\sin\left(x+\frac{\pi}{4}\right)=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow x=-\frac{3\pi}{4}+k2\pi\)
2.
\(\Leftrightarrow1-2cos^2\left(\frac{\pi}{4}-\frac{x}{2}\right)+sin\frac{x}{2}sinx-cos\frac{x}{2}sin^2x=0\)
\(\Leftrightarrow-cos\left(\frac{\pi}{2}-x\right)+sinx\frac{x}{2}sinx-cosx\frac{x}{2}sin^2x=0\)
\(\Leftrightarrow-sinx+sin\frac{x}{2}sinx-cos\frac{x}{2}sin^2x=0\)
\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1-cos\frac{x}{2}sinx\right)=0\)
\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1-2cos^2\frac{x}{2}sin\frac{x}{2}\right)=0\)
\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1-2sin\frac{x}{2}\left(1-sin^2\frac{x}{2}\right)\right)=0\)
\(\Leftrightarrow sinx\left(2sin^3\frac{x}{2}-sin\frac{x}{2}-1\right)=0\)
\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1\right)\left(2sin^2\frac{x}{2}+2sin\frac{x}{2}+1\right)=0\)
\(\Leftrightarrow...\)