Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Su Bi

Mọi người giúp em với, em cảm ơn ạ

Bài tập quy về dạng phương trình cơ bản:

\(1.\sin\left(x-\frac{\pi}{3}\right)+2cos\left(x-\frac{\pi}{6}\right)=0\);

\(2.\sin^23x=cos^2x\);

\(3.sin\left(2x-\frac{7\pi}{2}\right)+cos2x=1\)

\(4.\sqrt{2}cos\left(x-\frac{3\pi}{4}\right)=1+sinx\)

\(5.\sin\left(2x-\frac{7\pi}{2}\right)+cós2x=1\)

Nguyễn Việt Lâm
25 tháng 6 2019 lúc 10:07

Câu 1:

\(\Leftrightarrow sinx.cos\frac{\pi}{3}-cosx.sin\frac{\pi}{3}+2\left(cosx.cos\frac{\pi}{6}+sinx.sin\frac{\pi}{6}\right)=0\)

\(\Leftrightarrow sinx+\frac{1}{\sqrt{3}}cosx=0\)

Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cosx\)

\(tanx+\frac{1}{\sqrt{3}}=0\Rightarrow tanx=-\frac{1}{\sqrt{3}}\Rightarrow x=\frac{\pi}{6}+k\pi\)

Câu 2:

\(\Leftrightarrow1-cos6x=1+cos2x\)

\(\Leftrightarrow-cos6x=cos2x\)

\(\Leftrightarrow cos\left(\pi-6x\right)=cos2x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\pi-6x+k2\pi\\2x=6x-\pi+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
25 tháng 6 2019 lúc 10:11

Câu 3:

\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}-4\pi\right)+cos2x=1\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}\right)+cos2x=1\)

\(\Leftrightarrow cos2x+cos2x=1\)

\(\Leftrightarrow cos2x=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{3}+k2\pi\\2x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Câu 4:

\(\sqrt{2}\left(cosx.cos\frac{3\pi}{4}+sinx.sin\frac{3\pi}{4}\right)=1+sinx\)

\(\Leftrightarrow-cosx+sinx=1+sinx\)

\(\Leftrightarrow cosx=-1\Rightarrow x=\pi+k\pi2\)

Câu 5:

Giống câu 3, chắc bạn ghi nhầm đề


Các câu hỏi tương tự
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
QSDFGHJK
Xem chi tiết
Julian Edward
Xem chi tiết
Linh chi
Xem chi tiết
Julian Edward
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
phamthiminhanh
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
byun aegi park
Xem chi tiết