Q(x)= -4x3+2x-3+2x-x2-2
thu gọn đa thức
Bài 1 Cho hai đa thức: P(x) = 4x3 – 3x + x2 + 7 + x
Q(x) =– 4x3 + 2x – 2 + 2x – x2 – 1
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến
b) Tính M(x) = P(x) + Q(x) và N(x) = P(x) – Q(x)
c) Tìm nghiệm của đa thức M(x)
a: \(P\left(x\right)=4x^3+x^2-2x+7\)
\(Q\left(x\right)=-4x^3-x^2+4x-3\)
b: \(M\left(x\right)=4x^3+x^2-2x+7-4x^3-x^2+4x-3=2x+4\)
\(N\left(x\right)=8x^3+2x^2-6x+10\)
c: Đặt M(x)=0
=>2x+4=0
hay x=-2
\(a,Q_{\left(x\right)}=-4x^3+2x-2+2x-x^2-1\\ Q_{\left(x\right)}=-4x^3-x^2+4x-3\\ P_{\left(x\right)}=4x^3-3x+x^2+7+x\\ P_{\left(x\right)}=4x^3+x^2-2x+7\)
\(b,M_{\left(x\right)}=P_{\left(x\right)}+Q_{\left(x\right)}\\ M_{\left(x\right)}=4x^3+x^2-2x+7-4x^3-x^2+4x-3\\ M_{\left(x\right)}=2x+4\)
\(N_{\left(x\right)}=4x^3+x^2-2x+7+4x^2+x^2-4x+3\\ N_{\left(x\right)}=8x^3+2x^2-6x+10\)
\(c,M_{\left(x\right)}=0\\ \Rightarrow2x+4=0\\ \Rightarrow2x=-4\\ \Rightarrow x=-2\)
a)\(P\left(x\right)=4x^3+x^2-2x+7\)
\(Q\left(x\right)=-4x^3-x^2+4x-3\)
b)\(M\left(x\right)=4x^3+x^2-2x+7-4x^3-x^2-4x+3\)
\(M\left(x\right)=-6x+10\)
\(N\left(x\right)=4x^3+x^2-2x+7+4x^3+x^2+4x-3\)
\(N\left(x\right)=8x^3+2x^2+2x+4\)
c) cho M(x) = 0
\(=>-6x+10=0\)
\(-6x=-10\Rightarrow x=-\dfrac{10}{-6}=\dfrac{5}{3}\)
Cho đa thức: Q(x) = 4x3 + 7x + 9 + x2 – 2x - 3
a) Thu gọn đa thức Q(x), cho biết hệ số tự do, hệ số cao nhất của đa thức Q(x)
b) Tính giá trị của đa thức Q(x) với x = 2. cần gấp
a)\(Q\left(x\right)=4x^3+x^2+\left(7x-2x\right)+\left(9-3\right)=4x^3+x^2+5x+6\)
hệ số tự do : 6
hệ số cáo nhất : 6
b) thay x = 2 vào Q(x) ta đa
\(Q\left(2\right)=4.2^3+2^2+5.2+6=4.8+4+10+6\)
\(Q\left(2\right)=32+4+10+6=52\)
`a)`
`Q(x)=4x^3+7x+9+x^2-2x-3`
`Q(x)=4x^3+x^2+(7x-2x)+(9-3)`
`Q(x)=4x^3+x^2+5x+6`
`@` Hệ số tự do: `6`
`@` Hệ số cao nhất: `4`
_______________________________________
`b)` Thay `x=2` vào `Q(x)`. Có:
`Q(x)=4.2^3+2^2+5.2+6`
`Q(x)=32+4+10+6=52`
a, \(Q = 4x^3 + x^2 + (7x-2x) + (9-3) = 4x^3 + x^2 + 5x + 6 = 4x^3 + (x+2)(x+3).\)
Hệ số tự do là $6$, hệ số cao nhất là $5$.
b,Giá trị của đa thức khi $x = 2$ là:
$Q = 42^3 + (2+2)(2+3) = 32 + 4 . 5 = 52.$
Vậy khi $x = 2$ thì giá trị đa thức trên là $52$.
3 Cho hai đa thức P(x) = 2x3 – 2x + x2 – x3 + 3x + 2
và Q(x) = 3x3 -4x2 + 3x – 4x – 4x3 + 5x2 + 1
a. Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến .
b. Tính M(x) = P(x) + Q(x) ; N(x) = P(x) - Q(x) c. Chứng tỏ đa thức M(x) không có nghiệm .
a, \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\\ =x^3+x^2+x+2\)
\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\\ =-x^3+x^2-x+1\)
b) \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1\\ =2x^2+3\)
\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1\\ =2x^3+2x+1\)
c, Ta thấy \(2x^2\ge0,3>0\Rightarrow M\left(x\right)>0\)
\(\Rightarrow M\left(x\right)\) không có nghiệm
a: Ta có: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(=x^3+x^2+x+2\)
Ta có: \(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)
\(=-x^3-4x^2-x+1\)
b: Ta có: M(x)=P(x)+Q(x)
\(=x^3+x^2+x+2-x^3-4x^2-x+1\)
\(=-3x^2+3\)
Ta có N(x)=P(x)-Q(x)
\(=x^3+x^2+x+2+x^3+4x^2+x-1\)
\(=2x^3+5x^2+2x+1\)
2) Cho đa thức: M(x) = 4x3 + 6x + 8 + x2 – 2x - 3
a) Thu gọn đa thức M(x), cho biết hệ số tự do của đa thức M(x)
b) Tính giá trị của đa thức M(x) với x =2 giúp mik v ạ
a: \(M\left(x\right)=4x^3+x^2+4x+5\)
Hệ số tự do là 5
b: M(2)=32+4+8+5=49
Bài 3. Cho hai đa thức P(x) = 2x3 – 2x + x2 – x 3 + 3x + 2 Q(x) = 3x3 -4x2 + 3x – 4x – 4x3 + 5x2 + 1 a) Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến b) Tính M(x) = P(x) + Q(x) ; N(x) = P(x) - Q(x) c) Chứng tỏ đa thức M(x) không có nghiệm
a: \(P\left(x\right)=2x^3-x^3+x^2+3x-2x+2=x^3+x^2+x+2\)
\(Q\left(x\right)=3x^3-4x^3-4x^2+5x^2+3x-4x+1=-x^3+x^2-x+1\)
b: M(x)=P(x)+Q(x)
\(=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)
N(x)=P(x)-Q(x)
\(=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)
c: Vì \(2x^2+3>0\forall x\)
nên M(x) vô nghiệm
a, \(P\left(x\right)=x^3+x^2+x+2\)
\(Q\left(x\right)=-x^3+x^2-x+1\)
b, \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)
\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)
c, giả sử \(M\left(x\right)=2x^2+3=0\)( vô lí )
vì 2x^2 >= 0 ; 2x^2 + 3 > 0
Vậy giả sử là sai hay đa thức M(x) ko có nghiệm
2:Cho các đa thức: P(x) = 15 - 4x3 + 3x2 + 2x – x 3 - 10 Q(x) = 5 + 4x3 + 6x2 – 5x - 9x3 +7x a) Thu gọn mỗi đa thức trên. b) Tính giá trị của đa thức P(x) + Q(x) tại x = 1 2 . c) Tìm x để Q(x) – P(x) = 6.
mấy cái sau x là mũ nhé
a, \(P\left(x\right)=15-4x^3+3x^2+2x-x^3-10=-5x^3+3x^2+2x+5\)
\(Q\left(x\right)=5+4x^3+6x^2-5x-9x^3+7x=-5x^3+6x^2+2x+5\)
b, \(P\left(x\right)+Q\left(x\right)=-5x^3+3x^2+2x+5-5x^3+6x^2+2x+5\)
\(=-10x^3+9x^2+4x+10\)Thay x = 1/2 vào ta được :
\(=-\frac{10.1}{8}+\frac{9.1}{4}+\frac{4.1}{2}+10=-\frac{5}{4}+\frac{9}{4}+2+10=1+2+10=13\)
c, \(P\left(x\right)-Q\left(x\right)=-5x^3+3x^2+2x+5+5x^3-6x^2-2x-5=6\)
\(\Leftrightarrow-3x^2=6\Leftrightarrow x^2=-2\)vô lí vì \(x^2\ge0;-2< 0\)
Cho hai đa thức P(x) = 2x3 – 2x + x2 – x3 + 3x + 2
và Q(x) = 3x3 -4x2 + 3x – 4x – 4x3 + 5x2 + 1
a. Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến .
b. Tính M(x) = P(x) + Q(x) ; N(x) = P(x) - Q(x) c. Chứng tỏ đa thức M(x) không có nghiệm .
a: P(x)=x^3+x^2+x+2
Q(x)=-x^3+x^2-x+1
b: M(x)=P(x)+Q(x)
=x^3+x^2+x+2-x^3+x^2-x+1
=2x^2+3
N(x)=x^3+x^2+x+2+x^3-x^2+x-1
=2x^3+2x+1
c: M(x)=2x^2+3>=3>0 với mọi x
=>M(x) ko có nghiệm
Cho hai đa thức P(x) = 2x3 – 2x + x2 – x3 + 3x + 2
và Q(x) = 3x3 -4x2 + 3x – 4x – 4x3 + 5x2 + 1
a. Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến .
b. Tính M(x) = P(x) + Q(x) ; N(x) = P(x) - Q(x)
c. Chứng tỏ đa thức M(x) không có nghiệm .
Mn giải giúp mik bài này với ạ! Mik đag cần gấp
a: P(x)=x^3-x^2+x+2
Q(x)=-x^3+x^2-x+1
b: M(x)=P(x)+Q(x)=x^3-x^2+x+2-x^3+x^2-x+1=3
N(x)=P(x)-Q(x)
=x^3-x^2+x+2+x^3-x^2+x-1
=2x^3-2x^2+2x+1
c: M(x)=3
=>M(x) ko có nghiệm
Cho hai đa thức P(x) = 2x3 - 2x + x2 - x3 + 3x + 2 và Q(x) = 3x3 - 4x2 + 3x - 4x - 4x3 + 5x2 + 1
A ) Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến
B ) Tính M(x) = P(x) + Q(x) ; N(x) = P(x) - Q(x)
C ) Chứng tỏ đa thức M(x) không có nghiệm
a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm
1) Thu gọn và sắp xếp các hạng của các đa thức sau theo lũy thừa giảm của các biến và chỉ rõ các hệ khác 0 của :
a, A(x)= 4+3x2-4x3+4x2-2x-x3+5x5
b, B(x)= x2+2x4+4x3-5x6+3x2-4x-1
2) Tính tổng và hiệu của 2 đa thức trên sau khi đã thu gọn
1: \(A=5x^5-5x^3+7x^2-2x+4\)
\(B\left(x\right)=-5x^6+2x^4+4x^3+4x^2-4x-1\)
2: \(A\left(x\right)+B\left(x\right)=5x^5-5x^3+7x^2-2x+4-5x^6+2x^4+4x^3+4x^2-4x-1\)
\(=-5x^6+5x^5+2x^4-x^3+11x^2-6x+3\)
\(A\left(x\right)-B\left(x\right)\)
\(=5x^5-5x^3+7x^2-2x+4+5x^6-2x^4-4x^3-4x^2+4x+1\)
\(=5x^6+5x^5-2x^4-9x^3+3x^2+2x+5\)