Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
dâu cute
Xem chi tiết
ILoveMath
15 tháng 1 2022 lúc 19:45

Bài 2:

\(a,\dfrac{2}{x}=\dfrac{x}{8}\\ \Rightarrow x.x=8.2\\ \Rightarrow x^2=16\\ \Rightarrow x=\pm4\)

\(b,\dfrac{2x-9}{240}=\dfrac{39}{80}\\ \Rightarrow80\left(2x-9\right)=240.39\\ \Rightarrow160x-720=9360\\ \Rightarrow160x=10080\\ \Rightarrow x=63\)

\(c,\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Rightarrow3\left(x-1\right)=8.9\\ \Rightarrow3\left(x-1\right)=72\\ \Rightarrow x-1=24\\ \Rightarrow x=25\)

Bò Good Girl
Xem chi tiết
ILoveMath
6 tháng 11 2021 lúc 15:28

C

Tùng Chiii
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2023 lúc 23:24

d:

ĐKXĐ: y<>0; x<>0; y<>2

 \(\dfrac{4}{x}+\dfrac{2}{y}=1\)

=>\(\dfrac{4y}{xy}+\dfrac{2x}{xy}=1\)

=>2x+4y=xy

=>x(2-y)=-4y

=>x(y-2)=4y

=>\(x=\dfrac{4y}{y-2}\)

mà x,y nguyên

nên \(4y⋮y-2\)

\(\Leftrightarrow4y-8+8⋮y-2\)

=>\(y-2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

=>\(y\in\left\{3;1;4;6;-2;10;-6\right\}\)

=>\(x\in\left\{12;-4;8;6;2;5;3\right\}\)

e: 

ĐKXĐ: x<>0; y<>0; y<>3

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\)

=>\(\dfrac{x+y}{xy}=\dfrac{1}{3}\)

=>3x+3y=xy

=>x(3-y)=-3y

=>\(x=\dfrac{3y}{y-3}\)

mà x,y nguyên

nên \(3y⋮y-3\)

=>\(3y-9+9⋮y-3\)

=>\(y-3\in\left\{1;-1;3;-3;9;-9\right\}\)

=>\(y\in\left\{4;2;6;12;-6\right\}\)

=>\(x\in\left\{12;-6;6;4;2\right\}\)

Nezuko Kamado
Xem chi tiết
Nezuko Kamado
31 tháng 10 2021 lúc 7:37

Mn ơi giúp mk với , please !!!

hưng phúc
31 tháng 10 2021 lúc 7:48

1. Ta có: \(\dfrac{x}{-7}=\dfrac{y}{4}\Rightarrow\dfrac{2x}{-14}=\dfrac{3y}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)

=> \(\left\{{}\begin{matrix}x=-21\\y=12\end{matrix}\right.\)

2. Ta có:

\(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)

\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)

=> \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)

=> \(\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)

Hạt Têu
Xem chi tiết
Nguyễn Đức Trí
18 tháng 9 2023 lúc 21:42

\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\left(x;y\in Z\right)\)

\(MSC:8x\left(x\ne0\right)\)

\(pt\Leftrightarrow\dfrac{40+2xy}{8x}=\dfrac{x}{8x}\)

\(\Leftrightarrow40+2xy=x\)

\(\Leftrightarrow x-2xy=40\)

\(\Leftrightarrow x\left(1-2y\right)=40\)

\(\Leftrightarrow x;\left(1-2y\right)\in U\left(40\right)=\left\{-1;1;-2;2;-4;4;-5;5;-8;8;-10;10;-20;20;-40;40\right\}\)

Bạn lập bảng sẽ tìm ra các cặp \(\left(x;y\in Z\right)\) nhé!

ngọ nhâm
Xem chi tiết
Phan Thế Nghĩa
18 tháng 5 2017 lúc 8:26

ta có:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)

\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y+z-z}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(\dfrac{xz+yz+z^2+xy}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(\dfrac{\left(y+z\right)\left(x+z\right)}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\\dfrac{\left(y+z\right)\left(x+z\right)}{xyz\left(x+y+z\right)}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^8=\left(-y\right)^8\\y^9=\left(-z\right)^9\\z^{10}=\left(-x\right)^{10}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^8-y^8=0\\y^9+z^9=0\\x^{10}-z^{10}=0\end{matrix}\right.\)\(\Rightarrow\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)=0\)

\(\Rightarrow M=\dfrac{3}{4}\)

Quách Trần Gia Lạc
Xem chi tiết
Ngô Tấn Đạt
5 tháng 6 2018 lúc 8:50

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\\ \Leftrightarrow\dfrac{x+y}{xy}+\left(\dfrac{1}{z}-\dfrac{1}{x+y+z}\right)=0\\ \Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\\ \Leftrightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{xz+yz+z^2}\right)=0\\ \)

Nếu x+y=0 => x=-y

Nếu

\(\dfrac{1}{xy}+\dfrac{1}{xz+yz+z^2}=0\\ \Rightarrow xz+yz+z^2+xy=0\\ \Rightarrow\left(x+z\right)\left(y+z\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-z\\y=-z\end{matrix}\right.\)

Tự thế vào :v

crewmate
Xem chi tiết
ILoveMath
29 tháng 11 2021 lúc 20:58

Áp dụng t/c dtsbn ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\dfrac{1}{x+y+z}=2\Rightarrow2x+2y+2z=1\Rightarrow x+y+z=0,5\Rightarrow\left\{{}\begin{matrix}x+y=0,5-z\\y+z=0,5-x\\x+z=0,5-y\end{matrix}\right.\\ \dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow0,5-x+1=2x\Rightarrow x=0,5\\ \dfrac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow0,5-y+2=2y\Rightarrow y=\dfrac{5}{6}\\ \dfrac{x+y-3}{z}=2\Rightarrow x+y-3=2z\Rightarrow0,5-z-3=2z\Rightarrow z=-\dfrac{5}{6}\)