Tìm x, y \(\in\) Z biết : \(\dfrac{x}{8}-\dfrac{1}{y}=\dfrac{1}{4}\)
hãy tìm giá trị của x trong các biểu thức sau biết x thuộc Z : \(\dfrac{2}{x}+\dfrac{1}{y}=3\) ; \(\dfrac{2}{y}-\dfrac{1}{x}=\dfrac{8}{xy}+1\) ; \(x-\dfrac{1}{y}-\dfrac{4}{xy}=-1\) ; \(\dfrac{-3}{y}-\dfrac{12}{xy}=1\) ; \(\dfrac{x}{8}-\dfrac{1}{y}=\dfrac{1}{4}\).
help me pls!
1. tìm các số chưa biết :
a) \(\dfrac{4}{3}\)= \(\dfrac{8}{x}\)=\(\dfrac{-y}{21}\)=\(\dfrac{-40}{z}\)=\(\dfrac{16}{t}\)=\(\dfrac{y}{111}\)
b) \(\dfrac{-7}{6}=\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{14}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{4}{-78}\)
2. tìm x biết :
a) \(\dfrac{2}{x}=\dfrac{x}{8}\)
b) \(\dfrac{2x-9}{240}=\dfrac{39}{80}\)
c) \(\dfrac{x-1}{9}=\dfrac{8}{3}\)
mn giúp mk nha :>
Bài 2:
\(a,\dfrac{2}{x}=\dfrac{x}{8}\\ \Rightarrow x.x=8.2\\ \Rightarrow x^2=16\\ \Rightarrow x=\pm4\)
\(b,\dfrac{2x-9}{240}=\dfrac{39}{80}\\ \Rightarrow80\left(2x-9\right)=240.39\\ \Rightarrow160x-720=9360\\ \Rightarrow160x=10080\\ \Rightarrow x=63\)
\(c,\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Rightarrow3\left(x-1\right)=8.9\\ \Rightarrow3\left(x-1\right)=72\\ \Rightarrow x-1=24\\ \Rightarrow x=25\)
Câu 1 : Biết\(\dfrac{x}{t}=\dfrac{5}{6};\dfrac{y}{z}=\dfrac{1}{5};\dfrac{z}{x}=\dfrac{7}{3}\) ( x; y; z; t khác 0 ). Hãy tìm tỉ số \(\dfrac{t}{y}\)
A. \(\dfrac{t}{y}=\dfrac{14}{25}\) B. \(\dfrac{t}{y}=\dfrac{7}{8}\) C. \(\dfrac{t}{y}=\dfrac{18}{7}\) D. \(\dfrac{t}{y}=\dfrac{6}{7}\)
Tìm x,y ∈ \(Z\) biết :
d) \(\dfrac{4}{x}+\dfrac{2}{y}=1\)
e) \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\)
d:
ĐKXĐ: y<>0; x<>0; y<>2
\(\dfrac{4}{x}+\dfrac{2}{y}=1\)
=>\(\dfrac{4y}{xy}+\dfrac{2x}{xy}=1\)
=>2x+4y=xy
=>x(2-y)=-4y
=>x(y-2)=4y
=>\(x=\dfrac{4y}{y-2}\)
mà x,y nguyên
nên \(4y⋮y-2\)
\(\Leftrightarrow4y-8+8⋮y-2\)
=>\(y-2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
=>\(y\in\left\{3;1;4;6;-2;10;-6\right\}\)
=>\(x\in\left\{12;-4;8;6;2;5;3\right\}\)
e:
ĐKXĐ: x<>0; y<>0; y<>3
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\)
=>\(\dfrac{x+y}{xy}=\dfrac{1}{3}\)
=>3x+3y=xy
=>x(3-y)=-3y
=>\(x=\dfrac{3y}{y-3}\)
mà x,y nguyên
nên \(3y⋮y-3\)
=>\(3y-9+9⋮y-3\)
=>\(y-3\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(y\in\left\{4;2;6;12;-6\right\}\)
=>\(x\in\left\{12;-6;6;4;2\right\}\)
Tìm x,y,z biết :
1) \(\dfrac{x}{-7}=\dfrac{y}{4}\) và \(2x-3y=-78\)
2) \(\dfrac{x}{y}=\dfrac{9}{7};\dfrac{y}{z}=\dfrac{7}{3}\) và \(x-y+z=-15\)
1. Ta có: \(\dfrac{x}{-7}=\dfrac{y}{4}\Rightarrow\dfrac{2x}{-14}=\dfrac{3y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)
=> \(\left\{{}\begin{matrix}x=-21\\y=12\end{matrix}\right.\)
2. Ta có:
- \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
- \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
=> \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
=> \(\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
tìm x,y ϵ Z : \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\left(x;y\in Z\right)\)
\(MSC:8x\left(x\ne0\right)\)
\(pt\Leftrightarrow\dfrac{40+2xy}{8x}=\dfrac{x}{8x}\)
\(\Leftrightarrow40+2xy=x\)
\(\Leftrightarrow x-2xy=40\)
\(\Leftrightarrow x\left(1-2y\right)=40\)
\(\Leftrightarrow x;\left(1-2y\right)\in U\left(40\right)=\left\{-1;1;-2;2;-4;4;-5;5;-8;8;-10;10;-20;20;-40;40\right\}\)
Bạn lập bảng sẽ tìm ra các cặp \(\left(x;y\in Z\right)\) nhé!
x, y, z \(\in\) R thỏa mãn : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z} \)
Tính giá trị của M = \(\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\)
ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)
\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y+z-z}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(\dfrac{xz+yz+z^2+xy}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(\dfrac{\left(y+z\right)\left(x+z\right)}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\\dfrac{\left(y+z\right)\left(x+z\right)}{xyz\left(x+y+z\right)}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^8=\left(-y\right)^8\\y^9=\left(-z\right)^9\\z^{10}=\left(-x\right)^{10}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^8-y^8=0\\y^9+z^9=0\\x^{10}-z^{10}=0\end{matrix}\right.\)\(\Rightarrow\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)=0\)
\(\Rightarrow M=\dfrac{3}{4}\)
Cho \(x,y,z\in R\) thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\). Hãy tính giá trị của biểu thức \(M=\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\).
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\\ \Leftrightarrow\dfrac{x+y}{xy}+\left(\dfrac{1}{z}-\dfrac{1}{x+y+z}\right)=0\\ \Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\\ \Leftrightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{xz+yz+z^2}\right)=0\\ \)
Nếu x+y=0 => x=-y
Nếu
\(\dfrac{1}{xy}+\dfrac{1}{xz+yz+z^2}=0\\ \Rightarrow xz+yz+z^2+xy=0\\ \Rightarrow\left(x+z\right)\left(y+z\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-z\\y=-z\end{matrix}\right.\)
Tự thế vào :v
Tìm x;y;z biết
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\dfrac{1}{x+y+z}=2\Rightarrow2x+2y+2z=1\Rightarrow x+y+z=0,5\Rightarrow\left\{{}\begin{matrix}x+y=0,5-z\\y+z=0,5-x\\x+z=0,5-y\end{matrix}\right.\\ \dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow0,5-x+1=2x\Rightarrow x=0,5\\ \dfrac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow0,5-y+2=2y\Rightarrow y=\dfrac{5}{6}\\ \dfrac{x+y-3}{z}=2\Rightarrow x+y-3=2z\Rightarrow0,5-z-3=2z\Rightarrow z=-\dfrac{5}{6}\)