giải phương trình
1)\(\sqrt{2x+5}+\sqrt{x-1}=8\)
2)\(\sqrt{1-x}+\sqrt{4+x}=3\)
Bài 1: Giải phương trình
1) \(\sqrt{4x^2+12x+9}=2-x\left(vớix\le0\right)\)
2) \(\sqrt{x^4+2x^2+1}=x^2+5x+4\) ( với \(x^2+5x+4>0\))
3) \(\sqrt{5x+1}=4\)
4) \(\sqrt{3-x}=7\)
Câu 2,3,4 nx thôi ạ. Câu 1 có bạn giúp r ạ
1)\(\sqrt{4x^2+12x+9}=2-x\)
\(\Leftrightarrow\sqrt{\left(2x+3\right)^2}=2-x\)
\(\Leftrightarrow\left|2x+3\right|=2-x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2-x\\2x+3=x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
\(\)
2)\(\sqrt{x^4+2x^2+1}=x^2+5x+4\) ĐK:\(x\ge-1\)
\(\Leftrightarrow\sqrt{\left(x^2+1\right)^2}=x^2+5x+4\)
\(\Leftrightarrow\left|x^2+1\right|=x^2+5x+4\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=x^2+5x+4\\x^2+1=-x^2-5x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-3\\2x^2+5x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\2\left(x+\dfrac{5}{4}\right)^2+\dfrac{15}{8}=0\left(voli\right)\end{matrix}\right.\)
giải phương trình
1)\(\sqrt{31-x}=x-1\)
2)\(3\sqrt{x^2-1}=x^2+1\)
3)\(\sqrt{x^2-3x+5}+x=3x+7\)
giải phương trình :
a,\(\sqrt{2x^2+13x+5}+\sqrt{2x^2-3x+5}=8\sqrt{x}\)
b, \(\sqrt{x^2-\dfrac{4}{3}}+2\sqrt{x^2-1}=x\)
a.
ĐKXĐ: \(x\ge0\)
\(\sqrt{2x^2+13x+5}-5\sqrt{x}+\sqrt{2x^2-3x+5}-3\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2-12x+5}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{2x^2-12x+5}{\sqrt{2x^2-3x+5}+3\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-12x+5\right)\left(\dfrac{1}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-3x+5}+3\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-12x+5=0\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x^2\ge\dfrac{4}{3}\)
\(\sqrt{x^2-\dfrac{4}{3}}+\sqrt{4x^2-4}-x=0\)
\(\Leftrightarrow\sqrt{\dfrac{3x^2-4}{3}}+\dfrac{3x^2-4}{\sqrt{4x^2-4}+x}=0\)
\(\Leftrightarrow\sqrt{3x^2-4}\left(\dfrac{1}{\sqrt{3}}+\dfrac{\sqrt{3x^2-4}}{\sqrt{4x^2-4}+x}\right)=0\)
\(\Leftrightarrow3x^2-4=0\)
\(\Leftrightarrow...\)
Giải các phương trình sau :
1/\(\sqrt{x+2+4\sqrt{x-2}}=5\)
2/\(\sqrt{x+3+4\sqrt{x-1}}=2\)
3/\(\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\)
4/\(\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\)
\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)
\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)
\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)
Giải phương trình:
1) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
2) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
1/ ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-2.3\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|=1\)
Mà \(\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\sqrt{x-1}\ge2\\\sqrt{x-1}\le3\end{matrix}\right.\) \(\Rightarrow5\le x\le10\)
Vậy phương trình nghiệm đúng với mọi \(x\in\left[5;10\right]\)
2/ ĐKXĐ: \(x\ge\dfrac{5}{2}\)
Nhân 2 vế với \(\sqrt{2}\) ta được:
\(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{2x-5+2.3\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(\Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\)
\(\Leftrightarrow\sqrt{2x-5}+\left|\sqrt{2x-5}-1\right|=1\)
TH1: \(\sqrt{2x-5}\ge1\Rightarrow\sqrt{2x-5}+\sqrt{2x-5}-1=1\)
\(\Leftrightarrow\sqrt{2x-5}=1\Rightarrow2x=6\Rightarrow x=3\)
TH2: \(\sqrt{2x-5}< 1\Rightarrow\sqrt{2x-5}+1-\sqrt{2x-5}=1\Leftrightarrow1=1\) (đúng với mọi \(\dfrac{5}{2}\le x< 3\))
Vậy nghiệm của phương trình là \(\dfrac{5}{2}\le x\le3\)
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
Giải phương trình a, \(\sqrt{x+3}-\sqrt{2x-8}=\sqrt{7-x}\)
b, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\)
Giải phương trình \(\left(\frac{\sqrt{2}}{\sqrt{x+\sqrt{x^2-1}}}+\sqrt{x-1}\right)^2=2+\sqrt{1-\sqrt{x^4-x^2}}\)
\(b,\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\) \(Đkxđ:0\le\sqrt{x}\le5\)
Phương trình trên tương đương với:
\(\sqrt{8+t}+\sqrt{5-t}=5\left(\sqrt{x}=t\right)\)
\(\Leftrightarrow13+2\sqrt{\left(8+t\right)\left(5-t\right)}=25\)
\(\Leftrightarrow\sqrt{40-3t-t^2}=6\)
\(\Leftrightarrow t^2+3t-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t_1=1\\t_2=-4\left(ktm\right)\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
Vậy ............
Giải phương trình:
\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\)
Tham khảo:
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\left(đk:x\ge0\right)\)
\(\Leftrightarrow x+3+4x+4\sqrt{x\left(x+3\right)}=4+x\left(x+3\right)+4\sqrt{x\left(x+3\right)}\)
\(\Leftrightarrow5x+3=4+x^2+3x\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\left(tm\right)\)
giải phương trình:
1,\(\sqrt{3x-8}\)-\(\sqrt{x+1}\)=\(\dfrac{2x-11}{5}\)
2,3x2-3x+18=10\(\sqrt{x^3+8}\)
3,\(\sqrt{5+2x}\)+\(\sqrt{5-2x}\)+5=3\(\sqrt{25-4x^2}\)