A=4x^4+6x^2y^2+2x^2+20y^2
Tính A khi x^2+y^2=10
B=4x^2+6x^2y^2+2y^4+20y^2 Tính giá trị B khi x^2+y^2=10
\(B=4x^2+6x^2y^2+2y^4+20y^2\)
\(=4x^2+4x^2y^2+2x^2y^2+2y^4+20y^2\)
\(=4x^2.\left(x^2+y^2\right)+2y^2.\left(x^2+y^2\right)+20y^2\)
\(=\left(x^2+y^2\right).\left(4x^2+2y^2\right)+20y^2\)
Bí >>>
A=4x^4+6x^2y^2+2x^2+20y^2
(''^'' là mũ nha!!!!)
Tính A khi x^2+y^2=10
Giúp mk với mk đang cần gấp!!!
cho m=4x^2+x^2y^2+2y^4+20y^2. Tính giá trị của M khi x^2+y^2=10
Tính M=4x4+6x2y2+2y4+20y2 biết x2+y2=10
Lời giải:
$M=4x^2(x^2+y^2)+2y^2(x^2+y^2)+20y^2$
$=4x^2.10+2y^2.10+20y^2$
$=40x^2+20y^2+20y^2=40x^2+40y^2=40(x^2+y^2)=40.10=400$
d,5x+10/4x-8.4-2x/x+2
Bài 2: rút gọn
a, 6x ² y ³/8x ³y ²
b, x ³-x/3x+3
c, x ²+3xy/x ²-9y ²
d, x ²+4x+4/3x+6
Bài 3: Thực hiện phép tính
a, (x/x-3+(9-6x/x ²-3x)
b, 1/x-1/x+1
c, (x-12/6x-36)+(6/x ²-6x)
d, (6x-3/x):(4x ²-1/3x ²)
e, (x+y/2x-2y)-(x-y/2x+2y)-(y ²+x ²/y ²-x ²)
f, 7x+6/2x(x+7)-3x+6/2x ²+14x
g, (2/x+2-4/x ²+4x+4):(2/x ²-4+1/2-x)
Bài 1: Thực hiện phép tính
a) (x-4) (x+4) - (5-x) (x+1)
b) (3x^2 - 2xy + 4) + ( 5xy - 6x^2 - 7)
Bài 2: Rút gọn biểu thức
a) 3x^2 (2x + y) - 2y(4x^2 - y)
b) (x+3y) (x-2y) - (x^4 - 6x^2y^3): x^2y
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
Bài 2:
a, 3\(x^2\).(2\(x\) + y) - 2y(4\(x^2\) - y)
= 6\(x^3\) + 3\(x^2\).y - 8y\(x^2\) + 2y2
= 6\(x^3\) - (8\(x^2\)y - 3\(x^2\)y) + 2y2
= 6\(x^3\) - 5\(x^2\)y + 2y2
cho m=4x^4+6x^2.y^2+2y^4+20y^2 tinh gia tri m khi x^2+y^2
1/2.(6x-2y).(3x+y)
(2/3z-2/5x).(1/3z+1/5x).1/2
(5y-3x).1/4.(12x+20y)
(3/4y-1/2x).(x+3/2y).2
(a+b+c).(a+b-c)
(x-y+z).(x+y-z)
mng giúp mình vs ạ
\(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\dfrac{1}{2}.2\left(3x-y\right)\left(3x+y\right)=9x^2-y^2\)
\(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right).\dfrac{1}{2}=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}z\right).2.\dfrac{1}{2}=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)
\(\left(5y-3x\right).\dfrac{1}{4}\left(12x+20y\right)=\left(5y-3x\right)\left(5y+3x\right).4.\dfrac{1}{4}=25y^2-9x^2\)
\(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(x+\dfrac{3}{2}y\right)=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)=\dfrac{9}{4}y^2-x^2\)
\(\left(a+b+c\right)\left(a+b+c\right)=\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\left(x-y+z\right)\left(x+y-z\right)=x^2-\left(y-z\right)^2=x^2-y^2-z^2+2yz\)
a: \(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\left(3x-y\right)\cdot\left(3x+y\right)=9x^2-y^2\)
b: \(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right)\cdot\dfrac{1}{2}\)
\(=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right)\)
\(=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)
c: \(\left(5y-3x\right)\cdot\dfrac{1}{4}\cdot\left(12x+20y\right)\)
\(=\left(5y-3x\right)\left(5y+3x\right)\)
\(=25y^2-9x^2\)
d: \(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(\dfrac{3}{2}y+x\right)\cdot2\)
\(=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)\)
\(=\dfrac{9}{4}y^2-x^2\)
e: \(\left(a+b+c\right)\left(a+b-c\right)\)
\(=\left(a+b\right)^2-c^2\)
\(=a^2+2ab+b^2-c^2\)