\(tìmxbiết\dfrac{2}{2.4}+\dfrac{2}{4.6}+.....+\dfrac{2}{x.\left[x+2\right]}=\dfrac{4}{9}\)
\(\dfrac{1}{2.4}\)+\(\dfrac{1}{4.6}\)+...+\(\dfrac{1}{x.\left(x+2\right)}\)=\(\dfrac{1}{10}\)
Gọi biểu thức trên là A
Ta có:
2A = (\(\dfrac{1}{2.4}\)+\(\dfrac{1}{4.6}\)+...+\(\dfrac{1}{x.\left(x+2\right)}\)).2
2A = \(\dfrac{2}{2.4}\)+\(\dfrac{2}{4.6}\)+...+\(\dfrac{2}{x\left(x+2\right)}\)
2A = \(\dfrac{1}{2}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{6}\)+...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+2}\)
2A = \(\dfrac{1}{2}\)-\(\dfrac{1}{x+2}\)
mà A = \(\dfrac{1}{10}\)(đề bài)
nên 2A = \(\dfrac{2}{10}\) hay \(\dfrac{1}{2}\) - \(\dfrac{1}{x+2}\) = \(\dfrac{2}{10}\)
suy ra \(\dfrac{1}{x+2}\) = \(\dfrac{1}{2}\)-\(\dfrac{2}{10}\)=\(\dfrac{3}{10}\)
Tìm x, biết:
\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(2x-2\right).2x}=\dfrac{11}{48}\) (x ϵ N , x ≥ 2)
\(\Leftrightarrow\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{\left(2x-2\right).2x}=\dfrac{11}{24}\)
\(\Leftrightarrow\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2x-\left(2x-2\right)}{\left(2x-2\right).2x}=\dfrac{11}{24}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2x-2}-\dfrac{1}{2x}=\dfrac{11}{24}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{11}{24}\)
\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{2}-\dfrac{11}{24}\)
\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{24}\)
\(\Rightarrow2x=24\)
\(\Rightarrow x=12\)
Tìm x
\(\dfrac{1}{2.4}\) + \(\dfrac{1}{4.6}\) +...+ \(\dfrac{1}{\left(2x-2\right).2x}\) = \(\dfrac{1}{8}\) ( x ∈ N , x ≥ 2 )
có lời giải chi tiết
\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(2x-2\right).2x}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{\left(2x-2\right).2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{2x-2}-\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow2x=4\\ \Leftrightarrow x=2\left(tm\right)\)
\(\Leftrightarrow\dfrac{1}{4}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{\left(x-1\right)x}\right)=\dfrac{1}{8}\) ( đk x khác 0 , x khác 1)
\(\Leftrightarrow\dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{x-1}-\dfrac{1}{x}\right)=\dfrac{1}{8}\)
\(\Leftrightarrow1-\dfrac{1}{x}=\dfrac{1}{2}\)
=> x =2 ( tm)
\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(2x-2\right).2x}=\dfrac{11}{48}\left(x\in N;x\ge12\right)\)
\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{\left(2x-2\right)2x}=\dfrac{11}{24}\)
\(\Leftrightarrow\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2x-\left(2x-2\right)}{\left(2x-2\right)2x}=\dfrac{11}{24}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2x-2}-\dfrac{1}{2x}=\dfrac{11}{24}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{11}{24}\)
\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{24}\)
\(\Rightarrow x=12\) (nh)
\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(2x-2\right).2x}=\dfrac{11}{48}\left(x\in N;x\ge12\right)\)
\(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{\left(2x-2\right)2x}=\dfrac{11}{48}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{\left(2x-2\right)2x}\right)=\dfrac{11}{48}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2x-2}-\dfrac{1}{2x}\right)=\dfrac{11}{48}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{11}{24}\)\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{24}\)
\(\Leftrightarrow2x=24\Leftrightarrow x=12\) (thỏa mãn)
Bài 1 : Tìm x , biết :
a, \(\dfrac{-3}{x}=\dfrac{x}{-27}\) b, \(\dfrac{2}{3}\)của x là ( -150 ) c,\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{x.\left(x+2\right)}=\dfrac{4}{9}\)
Bài 2 : Tính :
A = \(\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
Bài 1: a) Ta có : \(\dfrac{-3}{x}=\dfrac{x}{-27}\Leftrightarrow\left(-3\right).\left(-27\right)=x.x\Leftrightarrow81=x^2\Leftrightarrow9^2=x^2\Leftrightarrow x=9\)
b) Do \(\dfrac{2}{3}\) của x là -150 nên x là: (-150) : \(\dfrac{2}{3}\) = -225
c) \(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+2}=\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{1}{2}-\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{1}{18}\)
\(\Leftrightarrow x+2=18\)
\(\Leftrightarrow x=16\)
Bài 2:
\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right)\left(\dfrac{1}{6}-\dfrac{1}{6}\right)\)
\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right).0\)
\(A=0\)
Tìm x biết :
\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(2x-2\right)2x}=\dfrac{1}{8}\left(x\in N,x\ge2\right)\)
mình ko biết mình làm đúng hay sai bạn nhé, mong mọi người góp ý
= 1/2.( 1/2.4+1/4.6+....+1/(2x-2)2x)=1/8
= 1/2.(1/2-1/4+1/4-1/6+....+1/(2x-2)-1/2x)=1/8
= 1/2.( 1/2-1/2x)=1/8
( 1/2-1/2x)=1/8:1/2
1/2-1/2x=1/4
1/2x =1/2-1/4
1/2x =1/4
2x = 4
x =4:2
x =2
\(l,\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}\)
\(m,\left(3-2\dfrac{1}{3}+\dfrac{1}{4}\right):\left(4-5\dfrac{1}{6}+2\dfrac{1}{4}\right)\)
\(n,F=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2008.2010}\)
\(p,F=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
p: \(F=\dfrac{1}{3}\left(\dfrac{3}{3\cdot6}+\dfrac{3}{6\cdot9}+\dfrac{3}{9\cdot12}+...+\dfrac{3}{30\cdot33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{10}{33}=\dfrac{10}{99}\)
n: \(F=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\cdot\dfrac{502}{1005}=\dfrac{1004}{1005}\)
m: \(=\left(3-\dfrac{7}{3}+\dfrac{1}{4}\right):\left(4-\dfrac{31}{6}+\dfrac{9}{4}\right)\)
\(=\dfrac{36-28+3}{12}:\dfrac{48-62+27}{12}\)
\(=\dfrac{11}{13}\)
\(\dfrac{9}{48}x\left(-2.4\right)+\left(\dfrac{1}{4}+\dfrac{13}{20}\right):2\)
\(=\dfrac{-9}{20}+\dfrac{9}{10}:2\)
\(=-\dfrac{9}{20}+\dfrac{9}{20}\)
\(=0\)
\(=\dfrac{9}{48}\times\left(-8\right)+\dfrac{9}{20}\times\dfrac{1}{2}=-\dfrac{3}{2}+\dfrac{9}{40}=-\dfrac{60}{40}+\dfrac{9}{40}=-\dfrac{51}{40}\)