Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đoàn Nhật Minh
Xem chi tiết
Lily :3
Xem chi tiết
OH-YEAH^^
27 tháng 7 2021 lúc 16:07

\(M=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{105}+\dfrac{1}{120}\)

\(M=2.\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)

\(M=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{15.16}\right)\)

\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)

\(M=2.\dfrac{3}{16}\)

\(M=\dfrac{3}{8}\)

Vậy \(\dfrac{1}{3}< M< \dfrac{1}{2}\)

Phù Thủy Cô Đơn
Xem chi tiết
Quìn
16 tháng 4 2017 lúc 21:52

\(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-...-\dfrac{1}{120}=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-\dfrac{2}{20}-\dfrac{2}{30}-\dfrac{2}{42}-...-\dfrac{2}{240}=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\right)=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-2.\dfrac{3}{16}=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-\dfrac{3}{8}=\dfrac{5}{8}\)

\(\dfrac{x}{2008}=\dfrac{5}{8}+\dfrac{3}{8}\)

\(\dfrac{x}{2008}=1=\dfrac{2008}{2008}\)

\(\Rightarrow x=2008\)

Ngô Ngọc Khánh
Xem chi tiết
Trần Đăng Nhất
3 tháng 4 2018 lúc 21:46

\(B=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)

\(\Leftrightarrow B=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\)

\(\Leftrightarrow B=2\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)

\(\Leftrightarrow B=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)

\(\Leftrightarrow B=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(\Leftrightarrow B=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{3}{8}\)

\(\dfrac{3}{8}< \dfrac{1}{2}\)

\(\Rightarrow B< \dfrac{1}{2}\left(ĐPCM\right)\)

Vũ Minh Hằng
Xem chi tiết
Bùi Ngọc Minh
17 tháng 3 2017 lúc 22:02

b,\(\dfrac{1}{3.5}+\dfrac{1}{5.7}\)\(+\dfrac{1}{7.9}+....+\dfrac{1}{\left(2x+1\right).\left(2x+3\right)}=\dfrac{15}{93}\)

\(\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2x+1}-\dfrac{1}{2x+3}\right).\dfrac{1}{2}=\dfrac{15}{93}\)

\(\left[\dfrac{1}{3}+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+....+\left(\dfrac{1}{2x+1}-\dfrac{1}{2x+1}\right)-\dfrac{1}{2x+3}\right].\dfrac{1}{2}=\dfrac{15}{93}\)

\(\left(\dfrac{1}{3}+0+0+...+0-\dfrac{1}{2x+3}\right).\dfrac{1}{2}=\dfrac{15}{93}\)

\(\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{15}{93}:\dfrac{1}{2}\)

\(\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{10}{31}\)

\(\dfrac{1}{2x+3}=\dfrac{1}{3}-\dfrac{10}{31}\)

\(\dfrac{1}{2x+3}=\dfrac{1}{93}\)

\(\Rightarrow2x+3=93\)

\(2x=93-3=90\)

\(\Rightarrow x=90:2=45\)

Tường Vi
Xem chi tiết
Lê Song Phương
2 tháng 5 2023 lúc 15:27

a) Ta có \(A=\dfrac{n-5}{n-3}=\dfrac{n-3-2}{n-3}=1-\dfrac{2}{n-3}\). Để \(A\inℤ\) thì \(\dfrac{2}{n-3}\inℤ\) hay \(n-3\) là ước của 2. Suy ra \(n-3\in\left\{\pm1;\pm2\right\}\)

Nếu \(n-3=1\Rightarrow n=4\)\(n-3=-1\Rightarrow n=2\)\(n-3=2\Rightarrow n=5\)\(n-3=-2\Rightarrow n=1\). Vậy để \(A\inℤ\) thì \(n\in\left\{1;2;4;5\right\}\)

 \(A=\dfrac{n+4}{n+1}\) làm tương tự.

b) Dễ thấy các số ở mẫu có thể viết dưới dạng:

\(10=1+2+3+4=\dfrac{4\left(4+1\right)}{2}=\dfrac{4.5}{2}\)

\(15=1+2+3+4+5=\dfrac{5\left(5+1\right)}{2}=\dfrac{5.6}{2}\)

\(21=1+2+...+6=\dfrac{6\left(6+1\right)}{2}=\dfrac{6.7}{2}\)

...

\(120=1+2+...+15=\dfrac{15\left(15+1\right)}{2}=\dfrac{15.16}{2}\)

Do đó \(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\) 

\(A=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)

\(A=2\left(\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+...+\dfrac{16-15}{15.16}\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)

\(A=\dfrac{3}{8}\)

 

Đỗ Thị Huyền Trang
Xem chi tiết
Edogawa Conan
11 tháng 3 2017 lúc 20:58

\(A=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)

\(A=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\)

\(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\)

\(A=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)

\(A=2.\dfrac{3}{16}\)

\(A=\dfrac{3}{8}\)

Edogawa Conan
11 tháng 3 2017 lúc 21:01

\(B=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{107.111}\)

\(B=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{107}-\dfrac{1}{111}\)

\(B=\dfrac{1}{3}-\dfrac{1}{111}\)

\(B=\dfrac{12}{37}\)

Edogawa Conan
11 tháng 3 2017 lúc 21:04

\(C=\dfrac{7}{10.11}+\dfrac{7}{11.12}+\dfrac{7}{12.13}+...+\dfrac{7}{69.70}\)

\(C=7\left(\dfrac{1}{10.11}+\dfrac{1}{11.12}+\dfrac{1}{12.13}+...+\dfrac{7}{69.70}\right)\)

\(C=7\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)

\(C=7\left(\dfrac{1}{10}-\dfrac{1}{70}\right)\)

\(C=7.\dfrac{3}{35}\)

\(C=\dfrac{3}{5}\)

Phương Anh Ribi
Xem chi tiết
Trần Diệu Linh
10 tháng 4 2018 lúc 18:47

A= \(\dfrac{1}{1.2}\)+ \(\dfrac{1}{2.3}\)+ \(\dfrac{1}{3.4}\)+ \(\dfrac{1}{4.5}\)+ \(\dfrac{1}{5.6}\)

= 1-\(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\)- \(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\)- \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)- \(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)- \(\dfrac{1}{6}\)

= 1 - \(\dfrac{1}{6}\)= \(\dfrac{5}{6}\)

mk chỉ bt làm câu 1 thôi ak

mong bn thông cảmthanghoa

Ta Chia Tay Đi
Xem chi tiết
Trang
9 tháng 10 2017 lúc 18:43

a) \(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-...-\dfrac{1}{120}=\dfrac{5}{8}\)

\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\right)=\dfrac{5}{8}\)

\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\right)=\dfrac{5}{8}\)

\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\right)=\dfrac{5}{8}\)

\(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)=\dfrac{5}{8}\)

\(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\) \(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}-2.\dfrac{3}{16}=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}-\dfrac{3}{8}=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}=\dfrac{5}{8}+\dfrac{3}{8}\\ \Rightarrow\dfrac{x}{2008}=1\\ \Rightarrow x=2008\)

b) \(\dfrac{7}{x}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13.17}+...+\dfrac{4}{41.45}=\dfrac{29}{45}\)

\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13.17}+...+\dfrac{4}{41.45}\right)=\dfrac{29}{45}\)

\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\right)=\dfrac{29}{45}\)

\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=\dfrac{29}{45}\\ \Rightarrow\dfrac{7}{x}+\dfrac{8}{45}=\dfrac{29}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{29}{45}-\dfrac{8}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{21}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{7}{15}\\ \Rightarrow x=15\)

c) \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{15}{93}\)

\(\Rightarrow2\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}\right)=\dfrac{15}{93}.2\)

\(\Rightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{30}{93}\\ \Rightarrow\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2x+1}-\dfrac{1}{2x+3}=\dfrac{10}{31}\)

\(\Rightarrow\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{10}{31}\\ \Rightarrow\dfrac{2x}{3\left(2x+3\right)}=\dfrac{10}{31}\\ \Rightarrow\dfrac{10.3\left(2x+3\right)}{31}=2x\\ \Rightarrow\dfrac{30\left(2x+3\right)}{31}=2x\\ \Rightarrow x=\dfrac{30\left(2x+3\right)}{31}:2\\ \Rightarrow x=\dfrac{30\left(2x+3\right)}{62}\\ \Rightarrow x=\dfrac{15\left(2x+3\right)}{31}\\\Rightarrow\dfrac{15\left(2x+3\right)}{x}=31\\ \Rightarrow\dfrac{30x+45}{x}=31\\ \Rightarrow30+\dfrac{45}{x}=31\\ \Rightarrow \dfrac{45}{x}=1\\ \Rightarrow x=45\)

Nguyễn Thanh Hằng
9 tháng 10 2017 lúc 12:05

a/ \(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-............-\dfrac{1}{120}=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-\left(\dfrac{1}{10}+\dfrac{1}{15}+.......+\dfrac{1}{120}\right)=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+.......+\dfrac{2}{240}\right)=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{15.16}\right)=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}-\dfrac{3}{16}=\dfrac{5}{8}\)

\(\Leftrightarrow\dfrac{x}{2008}=\dfrac{13}{16}\)

\(\Leftrightarrow x=1631,5\)

Vậy ..................