\(\dfrac{1}{9}\)+\(\dfrac{1}{10}\)+...+\(\dfrac{1}{19}\) hãy chỉ cách so sánh với 1
cho A=\(\left(\dfrac{1}{2^2}-1\right).\left(\dfrac{1}{3^2}-1\right)....\left(\dfrac{1}{100^2}-1\right)\)hãy so sánh A với \(\dfrac{-1}{2}\)
\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)...\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\left(\dfrac{-1}{2}\right).\dfrac{3}{2}.\left(-\dfrac{2}{3}\right).\dfrac{4}{3}...\left(\dfrac{-99}{100}\right).\dfrac{101}{100}\)
\(=\dfrac{\left(-1\right).\left(-2\right)...\left(-99\right)}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)
\(=\dfrac{1.2...99}{2.3...100}.\dfrac{101}{2}\)
\(=\dfrac{1}{100}.\dfrac{101}{2}\)
\(=\dfrac{101}{200}>\dfrac{100}{200}=\dfrac{1}{2}\)
Vậy...
Nhận thấy A có 99 hạng tử mà mỗi hạng tử chứa dấu âm nên viết gọn\(A=-\dfrac{3}{4}.\dfrac{8}{9}.....\dfrac{9999}{10000}=-\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}....\dfrac{99.101}{100^2}=-\dfrac{\left(1.2...99\right).\left(3.4...101\right)}{\left(2.3..100\right).\left(2.3...100\right)}=-\dfrac{101}{2.100}=-\dfrac{101}{200}< -\dfrac{1}{2}\)
\(\dfrac{1}{38}\)+ \(\dfrac{1}{40}\)+\(\dfrac{1}{42}\)+... +\(\dfrac{1}{50}\) hãy so sánh với 1
Tính biểu thức sau:
A= ( -1-3-5-7-...-2017)
các bạn chỉ ra các bước tính ở 2 dạng này giùm mình với! mình ko biết 2 dạng này tính sao hết ak! giúp mk nữa!
cảm ơn nhiều nha!!!!!!!!!
\(\dfrac{1}{38}>\dfrac{1}{40}>\dfrac{1}{42}>...>\dfrac{1}{50}\)
=>\(\dfrac{1}{38}+\dfrac{1}{40}+\dfrac{1}{42}+\dfrac{1}{44}+\dfrac{1}{46}+\dfrac{1}{48}+\dfrac{1}{50}< 7\cdot\dfrac{1}{38}=\dfrac{7}{38}< 1\)
Vậy tổng trên bé hơn 1
A=-1-3-5-...-2017
=-(1+3+5+...+2017)
Xét tổng B=1+3+5+...+2017
Tổng B có:(2017-1):2+1=1009(số hạng)
Tổng B=\(\dfrac{\left(2017+1\right)\cdot1009}{2}=1009\cdot1009=1018081\)
=>A=-B=-1018081
\(\dfrac{1}{38}+\dfrac{1}{40}+\dfrac{1}{42}+...+\dfrac{1}{50}\) có: \(\left(50-38\right):2+1\)= \(7\) (số hạng)
Ta có: \(\dfrac{1}{38}< \dfrac{1}{7};\dfrac{1}{40}< \dfrac{1}{7};\dfrac{1}{42}< \dfrac{1}{7};...;\dfrac{1}{50}< \dfrac{1}{7}\)
=> \(\dfrac{1}{38}+\dfrac{1}{40}+\dfrac{1}{42}+...+\dfrac{1}{50}< \dfrac{1}{7}+\dfrac{1}{7}+...+\dfrac{1}{7}\)( 7 số hạng)
=> \(\dfrac{1}{38}+\dfrac{1}{40}+\dfrac{1}{42}+...+\dfrac{1}{50}< \dfrac{7}{7}=1\)
Vậy: \(\dfrac{1}{38}+\dfrac{1}{40}+\dfrac{1}{42}+...+\dfrac{1}{50}< 1\)
A= (-1-3-5-7-...-2017)
A= 1+3+5+7+...+2017
A có: (2017-1):2+1=1009 (số hạng)
Tổng A = \(\dfrac{\left(2017+1\right).1009}{2}=1018081\)
A=1018081
a)tìm các cặp số nguyên x;y thỏa mãn (2x-)(x+1)=|y+1|
b)\(\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+\left|x+\dfrac{1}{5.7}\right|+...+\left|x+\dfrac{1}{97.99}\right|=50x\)
cho A=\(\left(\dfrac{1}{2^2}-1\right).\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)hãy so sánh A với \(\dfrac{-1}{2}\)
b) Vì \(\left|x+\dfrac{1}{1.3}\right| \ge0;\left|x+\dfrac{1}{3.5}\right|\ge0;...;\left|x+\dfrac{1}{97.99}\right|\ge0\)
\(\Rightarrow50x\ge0\Rightarrow x\ge0\)
Khi đó: \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3};\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5};...;\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\left(1\right)\)
Thay (1) vào đề bài:
\(x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+...+x+\dfrac{1}{97.99}=50x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)=50x\)
\(\Rightarrow49x+\left[\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\right]=50x\)
\(\Rightarrow49x+\dfrac{16}{99}=50x\)
\(\Rightarrow x=\dfrac{16}{99}\)
Vậy \(x=\dfrac{16}{99}.\)
Cho A = \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{4.5.6}+...+\dfrac{1}{2015.2016.2017}\)
So sánh A với \(\dfrac{1}{4}\)
Câu 1 : Tính và so sánh :
C = \(\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\) so sánh với \(\dfrac{2n+2}{3n}\)
- Please help me !!!
Giải:
\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)
Đk: \(n\ne0;n\ne-1\)
\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)
\(\Leftrightarrow C=\left(\dfrac{2.3-2}{2.3}\right)\left(\dfrac{3.4-2}{3.4}\right)\left(\dfrac{4.5-2}{4.5}\right)...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)
\(\Leftrightarrow C=\dfrac{4}{2.3}.\dfrac{10}{3.4}.\dfrac{18}{4.5}...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)
\(\Leftrightarrow C=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\left(\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\right)\)
\(\Leftrightarrow C=\dfrac{1.4.2.5.3.6...\left(n-1\right)\left(n+2\right)}{2.3.3.4.4.5.n\left(n+1\right)}\)
\(\Leftrightarrow C=\dfrac{\left[1.2.3...\left(n-1\right)\right]\left[4.5.6\left(n+2\right)\right]}{\left(2.3.4...n\right)\left[3.4.5....\left(n+1\right)\right]}\)
\(\Leftrightarrow C=\dfrac{n+2}{3n}\)
Vì \(\dfrac{n+2}{3n}< \dfrac{2n+2}{3n}\)
\(\Leftrightarrow C< \dfrac{2n+2}{3n}\)
Vậy ...
Câu 1 : Tính và so sánh :
C = \(\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\) so sánh với \(\dfrac{2n+2}{3n}\)
- Please help me !!!
Giải:
\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)
Đk: \(n\ne0;n\ne-1\)
\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)
\(\Leftrightarrow C=\left(\dfrac{2.3-2}{2.3}\right)\left(\dfrac{3.4-2}{3.4}\right)\left(\dfrac{4.5-2}{4.5}\right)...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)
\(\Leftrightarrow C=\dfrac{4}{2.3}.\dfrac{10}{3.4}.\dfrac{18}{4.5}...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)
\(\Leftrightarrow C=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\left(\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\right)\)
\(\Leftrightarrow C=\dfrac{1.4.2.5.3.6...\left(n-1\right)\left(n+2\right)}{2.3.3.4.4.5.n\left(n+1\right)}\)
\(\Leftrightarrow C=\dfrac{\left[1.2.3...\left(n-1\right)\right]\left[4.5.6\left(n+2\right)\right]}{\left(2.3.4...n\right)\left[3.4.5....\left(n+1\right)\right]}\)
\(\Leftrightarrow C=\dfrac{n+2}{3n}\)
Vì \(\dfrac{n+2}{3n}< \dfrac{2n+2}{3n}\)
\(\Leftrightarrow C< \dfrac{2n+2}{3n}\)
Vậy ...
Cho A =\(\dfrac{100^{2007}+1}{100^{2008}+1}\) và B = \(\dfrac{100^{2006}+1}{100^{2007+1}}\).Hãy so sánh A và B
Áp dụng tính chất : \(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) (\(a;b,m\in N\)*)
Ta có :
\(A=\dfrac{100^{2007}+1}{100^{2008}+1}< \dfrac{100^{2007}+1+99}{100^{2008}+1+99}=\dfrac{100^{2007}+100}{100^{2008}+100}=\dfrac{100\left(100^{2006}+1\right)}{100\left(100^{2007}+1\right)}=\dfrac{100^{2006}+1}{100^{2007}+1}=B\)
\(\Rightarrow A< B\)
So sánh các số hữu tỉ sau bằng cách nhanh nhất
a) \(\dfrac{-1}{200}\) và \(\dfrac{1}{2000}\)
b) \(\dfrac{11}{-56}\) và \(\dfrac{-25}{124}\)
a: -1/200<0<1/2000
b: \(\dfrac{-11}{56}=\dfrac{-275}{56\cdot25}=\dfrac{-275}{1400}\)
\(\dfrac{-25}{124}=\dfrac{-275}{124\cdot11}=\dfrac{-275}{1364}\)
mà 1400>1364
nên \(\dfrac{-11}{56}>-\dfrac{25}{124}\)
Cho: \(M=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{19}+\dfrac{1}{20}\) ; \(N=\dfrac{5^2}{5.10}+\dfrac{5^2}{10.15}+...+\dfrac{5^2}{2000.2005}+\dfrac{5^2}{2005.2010}\)
a) Tính tổng N
b) So sánh M và N
Các bạn giải ra từng bước dùm mik nha
Thanks m.n