Cho \(\Delta\)ABC nhọn nội tiếp \((\) O\()\) . Kẻ đường cao BD , CE
a, CM; \(\Delta\)ADE \(\wr\) \(\Delta\)ABC
b, CM; AO\(\perp\) DE
c, Kẻ đường kính ADF của đường tròn . Gọi I là trung điểm BC . CM ; H , I,F thẳng hàng
d, CM; 2.OI =AH
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm o các đường cao bd ce a cm ADE đồng Dạng ABC b kẻ tiếp tuyến Ax vs đường tròn (0) . Chứng minh rằng ax//de
a: Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiếp
=>góc AED=góc ACB
mà góc A chung
nên ΔAED đồng dạng với ΔABC
b: góc xAC=góc ABC
góc ABC=góc ADE
=>góc xAC=góc ADE
=>Ax//DE
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) (AB<AC) và hai đường cao BD và CE
A) cm tứ giác BEDC nội tiếp
B) qua A kẻ tiếp tuyến xy với đường tròn (O). Cm xy // ED
C) cm 2 góc EBD=ECD
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm (O) . Đường cao BD và đường cao CE cắt nhau tại H , BD cắt CE tại F, AF cắt đường tròn (O) tại K.
a, Cm : tứ giác BCDE nội tiếp, xác định tâm đường tròn.
b, cm : FA .FK = FE.FD;
c. CM : FH vuông góc với AM
Mình sửa lại đề: Cho tam giác ABC nhọn (AB < AC) nội tiếp (O). Đường cao BD, CE cắt nhau tại H. EF cắt BC tại F. AF cắt lại (O) tại K. Gọi M là trung điểm của BC.
a) Từ gt dễ thấy tứ giác BCDE nội tiếp đường tròn tâm M.
b) Tứ giác BCDE nội tiếp nên theo phương tích ta có FB . FC = FD . FE.
Tứ giác AKBC nội tiếp nên theo phương tích ta có FK . FA = FB . FC.
Vậy ta có đpcm.
c) Ta có FA . FK = FE . FD nên theo phương tích đảo ta có tứ giác AKED nội tiếp.
Gọi giao điểm thứ hai của đường tròn đường kính AH và FH là N.
Khi đó FH . FN = FE . FD = FB . FC.
Suy ra tứ giác BHNC nội tiếp.
Ta có \(\widehat{DNC}=360^o-\widehat{DNH}-\widehat{CNH}=\left(180^o-\widehat{DNH}\right)+\left(180^o-\widehat{CNH}\right)=\widehat{DEH}+\widehat{HBC}=2\widehat{HBC}=\widehat{DMC}\).
Do đó tứ giác DNMC nội tiếp.
Tương tự tứ giác ENMB nội tiếp.
Suy ra \(\widehat{DNM}+\widehat{DNA}=180^o-\widehat{ACB}+\widehat{AED}=180^o\) nên A, N, M thẳng hàng.
Từ đó \(\widehat{MHN}=\widehat{ANH}=90^o\) nên \(FH\perp AM\).
(Câu c là trường hợp đặc biệt của định lý Brocard khi tứ giác BEDC nội tiếp đường tròn tâm M).
Cho tam giác ABC nhọn nội tiếp đường tròn O kẻ đường cao AM, BD ,CE cắt tại H kẻ đường kính AK. a, CM: tứ giác BHCK là hình bình hành b, CM:AB.AC=AM.AK c, Kẻ OP vuông góc BC tại P.CM:AH=2OP
Cho tam giác ABC nhọn nội tiếp (O). Các đường cao BD và CE của tam giác cắt nhau tại H.
a) CM: tứ giác BCDE nội tiếp đường tròn tâm O.
b) Kẻ đường kình AK. CM: AB.BC = AK.BD.
c) CM: góc BCD = góc AED
d) Từ O kẻ OM vuông góc BC. CM: H, M, K thẳng hàng.
Cho Δ ABC nội tiếp đường tròn (O) , kẻ các đường cao BD và CE của Δ ABC chúng cắt nhau tại H và cắt đường tròn lần lượt tại I và K
a) CM ; tứ giác ADHE , BCDE nội tiếp
b) CM : AI = AK
c) Đường thẳng DE cắt đường tròn (O) tại hai điểm M , N . CM : AM = AN
Cho Δ ABC nội tiếp đường tròn (O) , kẻ các đường cao BD và CE của Δ ABC chúng cắt nhau tại H và cắt đường tròn lần lượt tại I và K
a) CM ; tứ giác ADHE , BCDE nội tiếp
b) CM : AI = AK
c) Đường thẳng DE cắt đường tròn (O) tại hai điểm M , N . CM : AM = AN
Cho Δ ABC nội tiếp đường tròn (O) , kẻ các đường cao BD và CE của Δ ABC chúng cắt nhau tại H và cắt đường tròn lần lượt tại I và K
a) CM ; tứ giác ADHE , BCDE nội tiếp
b) CM : AI = AK
c) Đường thẳng DE cắt đường tròn (O) tại hai điểm M , N . CM : AM = AN
- Nối AH , lấy U là trung điểm AH, lấy V là trung điểm của BC .
- Ta có : U là trung điểm AH .
=> \(AU=HU=\frac{1}{2}AH\) ( I )
- Xét \(\Delta ADH\) vuông tại D có trung tuyến DU ứng với cạnh huyền AH .
=> \(DU=\frac{1}{2}AH\) ( II )
- Xét \(\Delta AEH\) vuông tại E có trung tuyến EU ứng với cạnh huyền AH .
=> \(EU=\frac{1}{2}AH\) ( III )
- Từ ( I ), ( II ), ( III ) ta được : \(AU=DU=HU=EU\)
=> A, D, H, E cách đều U .
=> Tứ giác ADHE \(\in\left(U,AH\right)\)
CMTT : Tứ giác BCDE \(\in\left(V,BC\right)\)
b,
Cho tam giác ABC nhọn, kẻ 2 đường cao BD và CE cắt nhau tại H. a) Chứng minh tứ giác ADHE nội tiếp. b) CM tứ giác BEDC nội tiếp . c) góc acd = góc aed . d) góc edb =ecb
a) Xét tứ giác ADHE:
\(\widehat{AEH}+\widehat{ADH}=90^o+90^o=180^o.\)
Mà 2 góc này ở vị trí đối nhau.
\(\Rightarrow\) Tứ giác ADHE nội tiếp (dhnb).
b) Xét tứ giác BEDC:
\(\widehat{BEC}=\widehat{BDC}\left(=90^o\right).\)
Mà 2 đỉnh E; D kề nhau, cùng nhìn cạnh BC.
\(\Rightarrow\) Tứ giác BEDC nội tiếp (dhnb).
c) Sửa đề: Góc ACD \(\rightarrow\) Góc ACB.
Tứ giác BEDC nội tiếp (cmt).
\(\Rightarrow\widehat{AED}=\widehat{ACD}.\)
d) Tứ giác BEDC nội tiếp (cmt).
\(\Rightarrow\widehat{EDB}=\widehat{ECB}.\)