So sánh A =\(\dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\)với 2 ta được A...2
So sánh \(A\) với \(\dfrac{3}{4}\), biết \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
1/32< 1/2.3
1/42< 1/3.4
...
1/1002< 1/99.100
=> 1/22 + 1/32 + 1/42 + ... + 1/1002< 1/22 + 1/2.3 + 1/3.4 + ... + 1/99.100
A < 1/4 + 1/2 -1/3 + 1/3 - 1/4 +... + 1/99 - 1/100
A < 1/4 + 1/2 -1/100 < 1/4 + 1/2 = 3/4
=> A < 3/4
cho A=(\(\dfrac{1}{2^2}-1\))(\(\dfrac{1}{3^2}-1\))(\(\dfrac{1}{2^2}-1\))...........(\(\dfrac{1}{100^2}-1\)).SO sánh A với \(\dfrac{-1}{2}\)
A=(1/2^2-1) (1/3^2-1) (1/4^2-1) .... (1/100^2-1)
A=(1/2^2-2^2/2^2) (1/3^2-3^2/3^2) ...... (1/100^2-100^2/100^2)
A=1-2^2/2^2 . 1-3^2/3^2 .... 1-100^2/100^2
A=-(2^2-1/2^2 . 3^2-1/3^2 ..... 100^2-1/100^2)
A=-(1.3/2^2 x 2.4/3^2 ..... 99.101/100^2)
A=-(1.3.2.4.....99.101/2.2.3.3.....100.100)
A=-[(1.2.3....99).(3.4.5.....101) / (2.3.4...100) . (2.3.4...100) ]
A=-101/200 < -1/2
So sánh A và B :
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
\(B=\dfrac{1}{2}\)
Ta có `3A=1+1/3+....+1/3^99`
`=>3A-A=1-1/3^100`
`=>2A=1-1/3^100`
`=>A=1/2-1/(2.3^100)<1/2`
Hay `A<B`
cho A = (\(\dfrac{1}{2^2}-1\)).(\(\dfrac{1}{3^2}-1\)).(\(\dfrac{1}{4^2}-1\)).....(\(\dfrac{1}{100^2}-1\))
so sánh A với -\(\dfrac{1}{2}\)
b)Tìm số nguyên tố x,y sao cho \(x^2\)+117=\(^{y^2}\)
a) Trước hết ta chứng minh \(a^2-1=\left(a-1\right)\left(a+1\right)\text{tự chứng minh }\)
Áp dụng bổ đề trên ta có:
\(-A=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\cdot...\cdot\left(1-\dfrac{1}{100^2}\right) =\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}\cdot...\cdot\dfrac{100^2-1}{100^2}=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}=\dfrac{1\cdot2\cdot3^2\cdot...\cdot99^2\cdot100\cdot101}{2^2\cdot3^2\cdot...\cdot100^2}=\dfrac{1\cdot101}{2\cdot100}>\dfrac{1}{2}\\ \Rightarrow A< -\dfrac{1}{2}\)
b)
TH1: x chẵn mà x là số nguyên tố => x=2
=> y^2 = 117+4=121 => y=11 (thỏa mãn)
TH2: x lẻ => x^2 lẻ . Mà 117 lẻ
=> x^2+117 chẵn => y^2 chẵn => y chẵn mà y là số nguyên tố
=> y=2
=>x^2+117= 4=> x^2 = -113 (vô lý)
Vậy x=2;y=11
\(A=\dfrac{1}{^{ }3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\) và \(B=\dfrac{1}{2}\). Hãy so sánh chúng
Ta có: \(3\cdot A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
Do đó:
\(3\cdot A-A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{100}}\)
hay \(2\cdot A=1-\dfrac{1}{3^{100}}\)
\(\Leftrightarrow A=\left(1-\dfrac{1}{3^{100}}\right):2\)
\(\Leftrightarrow A=\left(1-\dfrac{1}{3^{100}}\right)\cdot\dfrac{1}{2}\)
\(\Leftrightarrow A=\dfrac{1}{2}-\dfrac{1}{2\cdot3^{100}}< \dfrac{1}{2}\)
hay A<B
\(S=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\) so sánh S với \(\dfrac{1}{2}\)
\(3S=1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)
=>2S=1-1/3^100
=>S=1/2-1/2*3^100<1/2
A= \(\left(\dfrac{1}{2}-1\right)\)\(\left(\dfrac{1}{3}-1\right)\).........\(\left(\dfrac{1}{10}-1\right)\). So sánh A với \(\dfrac{-1}{9}\)
B= \(\left(\dfrac{1}{4}-1\right)\)\(\left(\dfrac{1}{9}-1\right)\)...........\(\left(\dfrac{1}{100}-1\right)\). So sánh B với \(\dfrac{-11}{21}\)
a: \(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\)
\(=-\dfrac{1}{10}\)
9<10
=>1/9>1/10
=>\(-\dfrac{1}{9}< -\dfrac{1}{10}\)
=>\(A>-\dfrac{1}{9}\)
b: \(B=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{10}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{11}{10}\)
\(=\dfrac{-1}{10}\cdot\dfrac{11}{2}=\dfrac{-11}{20}\)
20<21
=>\(\dfrac{11}{20}>\dfrac{11}{21}\)
=>\(-\dfrac{11}{20}< -\dfrac{11}{21}\)
=>\(B< -\dfrac{11}{21}\)
a) rút gọn: \(\dfrac{4^5x9^4-2x6^9}{2^{10}x3^8+6^8x20}\)
b) Cho A=\(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\).So sánh A với 2
a: \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
so sánh \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{100}}\)với 10
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)
(100 số số hạng)
\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{100}{\sqrt{100}}=\dfrac{100}{10}=10\)