Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Thị Ngọc Yến Nhi
Xem chi tiết
Nhữ Tuệ Nhân
Xem chi tiết
Nguyễn Thùy Trang ( team...
17 tháng 9 2020 lúc 20:21

\(\left(\left|x\right|+2017\right)\left(504\left|x\right|-2016\right)< 0\)

\(\Leftrightarrow\left|x\right|+2017\)và \(504\left|x\right|-2016\)trái dấu

mà \(\left|x\right|+2017>0\forall x\)

\(\Leftrightarrow504\left|x\right|-2016< 0\)

\(\Leftrightarrow504\left|x\right|< 2016\)

\(\Leftrightarrow\left|x\right|< 4\)

\(\Leftrightarrow-4< x< 4\) mà x là số nguyên 

\(\Leftrightarrow x\in\left\{-3;-2;-1;0;1;2;3\right\}\)

Khách vãng lai đã xóa
Trần Công Mạnh
17 tháng 9 2020 lúc 20:22

Bg

Ta có: (|x| + 2017)(504|x| - 2016) < 0  (x\(\inℤ\))

Mà |x| + 2017 > 0 

Để biểu thức < 0 thì 504|x| - 2016 < 0

=> 504|x| < 2016

=> |x| < 4

=> |x| \(\in\){0; 1; 2; 3}

=> x \(\in\){0; 1; -1; 2; -2; 3; -3}

Vậy x \(\in\){0; 1; -1; 2; -2; 3; -3}

Khách vãng lai đã xóa
Tuệ Nhân
Xem chi tiết
Xyz OLM
17 tháng 9 2020 lúc 20:47

Vì |x| + 2017 \(\ge2017>0\forall x\)

=> 504|x| - 2016 < 0

=> 504|x| < 2016

=> |x| < 4

=> -4 < x < 4

=> \(x\in\left\{-3;-2;-1;0;1;2;3\right\}\)(Vì x nguyên)

Khách vãng lai đã xóa
Kiệt Nguyễn
Xem chi tiết
Đoàn Đức Hà
6 tháng 2 2021 lúc 23:18

\(f\left(1\right)=a_{2017}+a_{2016}+...+a_3+a_2+a_1+a_0\)

\(f\left(-1\right)=-a_{2017}+a_{2016}+...-a_3+a_2-a_1+a_0\)

\(f\left(1\right)+f\left(-1\right)=2\left(a_{2016}+a_{2014}+...+a_2+a_0\right)\)

\(S=\frac{f\left(1\right)+f\left(-1\right)}{2}=\frac{3^{2017}+1}{2}\)

Khách vãng lai đã xóa
Wayne Rooney
Xem chi tiết
Kẻ Dối_Trá
21 tháng 3 2018 lúc 19:38

|x-2016|2016+|x-2017|2016=1

|x-2016|2016=1 hoặc |x-2017|2016=1

th1:|x-2016|2016=1                                                    

|x-2016|2016=12016                                                                       

x-2016=1

x=1+2016

x=2017 

th2:

làm tương tự

ly phu sang
21 tháng 3 2018 lúc 19:41

x=2016hoac x=2017

nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2021 lúc 21:51

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

Nguyễn Thanh Hằng
Xem chi tiết
qwerty
2 tháng 6 2017 lúc 15:36

Câu b chuyển thành 4 cases rồi biến đổi 3 bước, a sẽ làm bước 4 và bước 5, 6 :v

...

...

...

\(\left[{}\begin{matrix}x=-2016\\x\in\left\{-2017,-2016\right\}\\x\in\varnothing\\x\in\varnothing\end{matrix}\right.\)

=> \(x\in\left\{-2017,-2016\right\}\)

=> Tổng các số nguyên x là: \(-2017+\left(-2016\right)=-4033\)

Mỹ Duyên
2 tháng 6 2017 lúc 15:36

Lm câu b trước:

b) \(\left|x+2016\right|+\left|x+2017\right|=1\)

=> \(\left|x+2016\right|+\left|-x-2017\right|=1\)

Mặt khác: \(\left|x+2016\right|+\left|-x-2017\right|\)

\(\ge\)\(\left|x+2016-x-2017\right|\) = \(\left|-1\right|=1\)

=> Dấu = xảy ra <=> \(2016\le x\le2017\)

Mà x nguyên => x = 2016; 2017

=> Tổng các số nguyên x là 2016 + 2017 = 4033

Mỹ Duyên
2 tháng 6 2017 lúc 15:39

a) Ta có: \(\left|-x\right|\ge\left|-30\right|\)

=> \(\left|x\right|\le30\)

Mà x \(\ge\) 1 => x = 1;2;3;....;30

=> Tổng các số nguyên x là 1+2+...+30 = \(\dfrac{30.31}{2}\) = 465

Dương Quân Hảo
Xem chi tiết
Thiên An
22 tháng 2 2017 lúc 20:09

Có 1 nhận xét nho nhỏ: tổng của tất cả các hệ số sau khi khai triển 1 đa thức chứa biến chính bằng giá trị của đa thức đó khi giá trị của biến bằng 1.

Do đó tổng các hệ số của biểu thức trên là: \(\left(3-4.1+1^2\right)^{2016}.\left(3+4.1+1^2\right)^{2017}=0\)

Hoàng Phúc
Xem chi tiết