Số nguyên dương a sao cho \(\dfrac{2a+5}{a+2}+\dfrac{4a+6}{a+2}-\dfrac{3a}{a+2}\) nhận giá trị nguyên là ?
Tìm số nguyên dương a sao cho:
A = 2a + 5/a + 2 + 4a + 6/a + 2 – 3a/a + 2 nhận giá trị nguyên
SỐ nguyên dương a sao cho A=2a+5/a+2+4a+6/a+2-3a/a+2 nhận giá trị nguyên
\(\frac{2a+5}{a+2}+\frac{4a+6}{a+2}-\frac{3a}{a+2}=\frac{2a+5+4a+6-3a}{a+2}\)
\(=\frac{3a+11}{a+2}=\frac{3\left(a+2\right)+5}{a+2}=\frac{3\left(a+2\right)}{a+2}+\frac{5}{a+2}=3+\frac{5}{a+2}\in Z\)
\(\Rightarrow5⋮a+2\)
\(\Rightarrow a+2\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
\(\Rightarrow a=3\) (a nguyên dương)
Tìm x biết (5/6)^2*x+17=3125/7776
giải giúp mình lun nah
\(\)Bài 1: Rút gọn:
M= (\(\dfrac{2a}{2a+b}\)-\(\dfrac{4a^2}{4a^2+4ab+b^2}\)):(\(\dfrac{2a}{4a^2-b^2}+\dfrac{1}{b-2a}\))
Bài 2: Cho biểu thức:
P=(\(\dfrac{a+6}{3a+9}-\dfrac{1}{a+3}\)):\(\dfrac{a+2}{27a}\)
a) Tìm ĐKXĐ và rút gọn
b) Tính giá trị của P tại a=1
2.
\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)
ĐKXĐ là :
\(a\ne0;-3;-2\)
Vs a = 1 ta có:
=> P=3
1.
\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)
Với giá trị nào của a để các b.thức sau có giá trị = 2:
a) \(\dfrac{3a-1}{3a+1}\) + \(\dfrac{a-3}{a+3}\)
b) \(\dfrac{2a-9}{2a-5}\) + \(\dfrac{3a}{3a-2}\)
c) \(\dfrac{10}{3}\) - \(\dfrac{3a-1}{4a+12}\) - \(\dfrac{7a+2}{6a+18}\)
Cho biểu thức:
M=(\(\dfrac{2+a}{2-a}\)- \(\dfrac{4a^2}{a^2-4}\)- \(\dfrac{2-a}{2+a}\)). \(\dfrac{2a-a^2}{a-3}\)
1) Rút gọn M
2) Tính giá trị của M khi |a+1|=3
3) Tìm a ϵ Z để M là số nguyên chia hết cho 4
Bạn xem thử tại đây:
https://hoc24.vn/cau-hoi/cho-bieu-thucm-dfrac2a2-a-dfrac4a2a2-4-dfrac2-a2aa-rut-gon-mb-tinh-gia-tri-cua-m-khi-a13c-tim-a-z-de-m-la-so-nguyen-chia-het-cho-4.7975358921144
a) Cho a,b,c,d >0 và dãy tỉ số :\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính :P=\(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
b)Tìm giá trị nguyên dương của x và y sao cho:\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)
hộ tui vs các chế
b.\(ĐK:x;y\in Z^+;x;y\ne0\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{5}{x}+\dfrac{5}{y}=1\)
\(\Leftrightarrow\dfrac{5}{x}=1-\dfrac{5}{y}\)
\(\Leftrightarrow\dfrac{5}{x}=\dfrac{y-5}{y}\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{y-5}\)
\(\Leftrightarrow x=\dfrac{5y}{y-5}\)
\(\Leftrightarrow x=5+\dfrac{25}{y-5}\) ( bạn chia \(5y\) cho \(y-5\) ý )
Để x;y là số nguyên dương thì \(25⋮y-5\) hay \(y-5\in U\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)
TH1:
\(y-5=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=30\end{matrix}\right.\) ( tm ) ( bạn thế y=6 vào \(x=5+\dfrac{25}{y+5}\) nhé )
Xét tương tự, ta ra được nghiệm nguyên dương của phương trình:
\(\left\{{}\begin{matrix}x=30\\y=6\end{matrix}\right.\) \(\left\{{}\begin{matrix}x=10\\y=10\end{matrix}\right.\) \(\left\{{}\begin{matrix}x=6\\y=30\end{matrix}\right.\)
Cho M=\(\dfrac{7\sqrt{a}-2}{2\sqrt{a}+1}\). Tìm các giá trị của a để M nhận giá trị là số nguyên dương
\(M=\dfrac{7\sqrt{a}-2}{2\sqrt{a}+1}\left(đk:a\ge0\right)=\dfrac{3\left(2\sqrt[]{a}+1\right)+\sqrt{a}-5}{2\sqrt{a}+1}=3+\dfrac{\sqrt{a}-5}{2\sqrt{a}+1}\)
Để \(M\in Z,M>0\) thì \(\sqrt{a}-5\ge0\Leftrightarrow a\ge25\) và:
\(\left\{{}\begin{matrix}\sqrt{a}-5⋮2\sqrt{a}+1\\2\sqrt{a}+1⋮2\sqrt{a}+1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2\sqrt{a}-10⋮2\sqrt{a}+1\\2\sqrt{a}+1⋮2\sqrt{a}+1\end{matrix}\right.\)
\(\Rightarrow\left(2\sqrt{a}+1\right)-\left(2\sqrt{a}-10\right)⋮2\sqrt{a}+1\)
\(\Rightarrow11⋮2\sqrt{a}+1\Rightarrow2\sqrt{a}+1\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Do \(\sqrt{a}\ge0\forall a\)
\(\Rightarrow\sqrt{a}\in\left\{0;5\right\}\)
\(\Rightarrow a\in\left\{0\left(loại\right);25\left(nhận\right)\right\}\)
Cho A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}vaB=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\)
a)tính giá trị của bt A khi x=2
b)rút gọn bt B
c) tìm x sao cho bt P=-A.B nhận giá trị là số nguyên
Thực hiện phép tính,rút gon bt:
\(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(\dfrac{4a^2-3a+5}{a^3-1}-\dfrac{1-2a}{a^2+a+1}+\dfrac{2y^2a-1}{ }\)