Chứng minh đẳng thức:
a - [\(\dfrac{\left(16-a\right)a}{a^2-4}\) + \(\dfrac{3+2a}{2-a}\) - \(\dfrac{2-3a}{a+2}\)] : \(\dfrac{a-1}{a^3+4a^2+4a}\) = \(\dfrac{3a}{1-a}\)
a, \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
b, \(\dfrac{x+2}{x-3}-\dfrac{x^2+6}{x^2-3x}\)
c, \(\dfrac{1}{9x-18}+\dfrac{16-7x}{72-18x}+\dfrac{5}{12x-24}\)
Rút gọn phân thức sau:
a)\(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
b)\(\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{5x+6}{4-x^2}\)
c)\(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
d)\(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
Rút gọn
1). \(\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\)
2). \(\dfrac{x^2+4x+3}{2x+6}\)
3). \(\dfrac{4x^2-4xy}{5x^3-5x^2y}\)
4). \(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)
5). \(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)
rút gọn
a) \(\dfrac{4-4x^2-9y^2-12xy}{2x+2+3y}\)
b) \(\dfrac{\left(2a+3\right)^3-\left(2a-3\right)^3}{\left(3a+4\right)^2+3a^2-24a-7}\)
c) M=\(\dfrac{\left|x-1\right|+\left|x\right|+x}{3x^2-4x-1}\) với x<0
Cho A= \(\dfrac{5}{x+3}-\dfrac{2}{3-x}-\dfrac{3x^2-2x-9}{x^2-9}\)
a. Rút gọn A?
b. Tính A khi I x-2 I = 1
Thực hiện phép tính ;
a,\(\dfrac{1}{xy-x^2}-\dfrac{1}{y^2-xy}\) b, \(\dfrac{x+3}{x-2}+\dfrac{4+x}{2-x}\)
Chứng minh đẳng thức:
a, \(\left(\dfrac{3}{2x-y}-\dfrac{2}{2x+y}-\dfrac{1}{2x-5y}\right).\dfrac{4x^2-y^2}{y^2}=\dfrac{-24}{2x-5y}\)
b, \(\dfrac{x^2-x+1}{x^2+x}.\dfrac{x+1}{3x-2}.\dfrac{9x-6}{x^2-x+1}=\dfrac{3}{x}\)
\(\dfrac{3x\left(x-y\right)^2\left(x-1\right)}{6x\left(x-1\right)\left(x-y\right)^3}\)
\(\dfrac{x^2+2x+1}{x+1}\)
\(\dfrac{a^3-4a^2+4a}{a^2-4}\)
\(\dfrac{7x^2+14x+7}{3x^2+3x}\)