Tính : \(\dfrac{15}{28}\)-\(\dfrac{186}{1116}\)-\(\dfrac{121}{462}\)+\(\dfrac{198}{189}\)
1.tìm x
a) (\(\dfrac{2}{11.13}+\dfrac{2}{13.15}+...+\dfrac{2}{19.21}).462-[2,04:(x+1,05)]:0,12=19\)
b) \(\dfrac{1}{24.25}+\dfrac{1}{25.26}+...+\dfrac{1}{29.30}+x:\dfrac{1}{3}=-4\)
2. thực hiện phép tính
a)\(\dfrac{15}{28}-\dfrac{186}{116}-\dfrac{121}{462}+\dfrac{189}{198}\)
b)\((1+\dfrac{1}{1.3}).(1+\dfrac{1}{2.4}).(1+\dfrac{1}{3.5})...(1+\dfrac{1}{99.100})\)
1.
a,
\(\left(\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}+...+\dfrac{2}{19\cdot21}\right)\cdot462-\left[2,04:\left(x+1,05\right)\right]:0,12=19\\ \left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)\cdot462-\left[2,04:\left(x+1,05\right)\right]:0,12=19\\ \left(\dfrac{1}{11}-\dfrac{1}{21}\right)\cdot462-\left[2,04:\left(x+1,05\right)\right]:0,12=19\\ \dfrac{10}{231}\cdot462-\left[2,04:\left(x+1,05\right)\right]:0,12=19\\ 20-\left[2,04:\left(x+1,05\right)\right]:0,12=19\\ \left[2,04:\left(x+1,05\right)\right]:0,12=1\\ 2,04:\left(x+1,05\right)=0,12\\ x+1,05=17\\ x=15,95\)
b,
\(\dfrac{1}{24\cdot25}+\dfrac{1}{25\cdot26}+...+\dfrac{1}{29\cdot30}+x:\dfrac{1}{3}=-4\\ \dfrac{1}{24}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{26}+...+\dfrac{1}{29}-\dfrac{1}{30}+x\cdot3=-4\\ \dfrac{1}{24}-\dfrac{1}{30}+x\cdot3=-4\\ \dfrac{1}{120}+x\cdot3=-4\\ 3x=\dfrac{-481}{120}\\ x=\dfrac{-481}{360}\)
2.
a,
\(\dfrac{15}{28}-\dfrac{186}{1116}-\dfrac{121}{462}+\dfrac{189}{198}\\ =\dfrac{15}{28}-\dfrac{1}{6}-\dfrac{11}{42}+\dfrac{21}{22}\\ =\dfrac{495}{924}-\dfrac{154}{924}-\dfrac{242}{924}+\dfrac{882}{924}\\ =\dfrac{495-154-242+882}{924}\\ =\dfrac{981}{924}\\ =\dfrac{327}{308}\)
b,
\(\left(1+\dfrac{1}{1\cdot3}\right)\cdot\left(1+\dfrac{1}{2\cdot4}\right)\cdot\left(1+\dfrac{1}{3\cdot5}\right)\cdot...\cdot\left(1+\dfrac{1}{99\cdot101}\right)\\ =\left(\dfrac{1\cdot3}{1\cdot3}+\dfrac{1}{1\cdot3}\right)\cdot\left(\dfrac{2\cdot4}{2\cdot4}+\dfrac{1}{2\cdot4}\right)\cdot\left(\dfrac{3\cdot5}{3\cdot5}+\dfrac{1}{3\cdot5}\right)\cdot...\cdot\left(\dfrac{99\cdot101}{99\cdot101}+\dfrac{1}{99\cdot101}\right)\\ =\left(\dfrac{2^2-1}{1\cdot3}+\dfrac{1}{1\cdot3}\right)\cdot\left(\dfrac{3^2-1}{2\cdot4}+\dfrac{1}{2\cdot4}\right)\cdot\left(\dfrac{4^2-1}{3\cdot5}+\dfrac{1}{3\cdot5}\right)\cdot...\cdot\left(\dfrac{100^2-1}{99\cdot101}+\dfrac{1}{99\cdot101}\right)\)\(=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot...\cdot\dfrac{100^2}{99\cdot101}\\ =\dfrac{2\cdot2}{1\cdot3}\cdot\dfrac{3\cdot3}{2\cdot4}\cdot\dfrac{4\cdot4}{3\cdot5}\cdot...\cdot\dfrac{100\cdot100}{99\cdot101}\\ =\dfrac{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot100\cdot100}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot99\cdot101}\\ =\dfrac{\left(2\cdot3\cdot4\cdot...\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot...\cdot100\right)}{\left(1\cdot2\cdot3\cdot...\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot101\right)}\\ =\dfrac{100\cdot2}{1\cdot101}\\ =\dfrac{200}{101}\)
mk sửa lại đề :D
2.b phải là 1/99.101
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\) và \(2x+3y-z=186\)
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
⇒ \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
⇒\(\left\{{}\begin{matrix}x=3.15=45\\y=3.20=60\\z=3.28=84\end{matrix}\right.\)
Ta có: \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
=> \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=3\)
=> \(\left\{{}\begin{matrix}x=45\\y=60\\z=84\end{matrix}\right.\)
Ta có:
\(\dfrac{2x}{15.2}=\dfrac{3y}{20.3}=\dfrac{z}{28}\) và \(2x+3y-z=186\)
Áp dụng tcdtsbn , ta có:
\(\dfrac{2x}{15.2}=\dfrac{3y}{20.3}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
\(\Rightarrow x=45\)
\(\Rightarrow y=60\)
\(\Rightarrow z=84\)
Bài 1:
a,\(|x-3|+|2-x|=0\)
b,\(\left(2-\dfrac{3}{4}x\right).\left(x+1\right)=0\)
bài 2:
a,A=\(\dfrac{\dfrac{-6}{7}+\dfrac{6}{13}-\dfrac{6}{29}}{\dfrac{9}{7}-\dfrac{9}{13}+\dfrac{9}{29}}\)
b,B=\(\dfrac{\dfrac{2}{15}-\dfrac{2}{21}+\dfrac{2}{39}}{0,25-\dfrac{5}{28}+\dfrac{5}{52}}\)
c,C=\(\dfrac{50-\dfrac{4}{15}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}:\dfrac{1+\dfrac{2}{21}-\dfrac{5}{121}}{\dfrac{65}{121}-\dfrac{26}{71}-13}\)
1.a) Dễ nhận thấy đề toán chỉ giải được khi đề là tìm x,y. Còn nếu là tìm x ta nhận thấy ngay vô nghiệm. Do đó: Sửa đề: \(\left|x-3\right|+\left|2-y\right|=0\)
\(\Leftrightarrow\left|x-3\right|=\left|2-y\right|=0\)
\(\left|x-3\right|=0\Rightarrow\left\{{}\begin{matrix}x-3=0\\-\left(x-3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\) (1)
\(\left|2-y\right|=0\Rightarrow\left\{{}\begin{matrix}2-y=0\\-\left(2-y\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\) (2)
Từ (1) và (2) có: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=3\\x_2=-3\end{matrix}\right.\\\left\{{}\begin{matrix}y_1=2\\y_2=-2\end{matrix}\right.\end{matrix}\right.\)
Bài 2:
a: \(=\dfrac{-6\left(\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{29}\right)}{9\left(\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{29}\right)}=\dfrac{-6}{9}=\dfrac{-2}{3}\)
b: \(=\dfrac{\dfrac{2}{15}-\dfrac{2}{21}+\dfrac{2}{39}}{\dfrac{10}{40}-\dfrac{10}{56}+\dfrac{10}{104}}\)
\(=\dfrac{\dfrac{2}{3}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{13}\right)}{\dfrac{10}{8}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{2}{3}:\dfrac{5}{4}=\dfrac{2}{3}\cdot\dfrac{4}{5}=\dfrac{8}{15}\)
c: \(=\dfrac{2\left(25-\dfrac{2}{13}+\dfrac{1}{15}-\dfrac{1}{17}\right)}{4\left(25-\dfrac{2}{13}+\dfrac{1}{15}-\dfrac{1}{17}\right)}:\dfrac{1+\dfrac{2}{21}-\dfrac{5}{121}}{13\left(\dfrac{5}{121}-\dfrac{2}{21}-1\right)}\)
=2/4:(-1)/13=2/4x(-13)=-13/2
tính
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
b)\(\dfrac{3}{14}:\dfrac{1}{28}-\dfrac{13}{21}:\dfrac{1}{28}+\dfrac{29}{42}:\dfrac{1}{28}-8\)
c)\(-1\dfrac{5}{7}.15+\dfrac{2}{7}\left(-15\right)+\left(-105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)
=\(\dfrac{10}{11}.\dfrac{-1}{2}\)
=\(\dfrac{-5}{11}\)
b;
B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\): \(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8
B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8
B = \(\dfrac{2}{7}\) - 8
B = \(\dfrac{2}{7}-\dfrac{56}{7}\)
B = - \(\dfrac{54}{7}\)
c; C = -1\(\dfrac{5}{7}\).15 + \(\dfrac{2}{7}\)(-15) + (-105).(\(\dfrac{2}{3}\) - \(\dfrac{4}{5}\) + \(\dfrac{1}{7}\))
C = - 15.(- 1 - \(\dfrac{5}{7}\) + \(\dfrac{2}{7}\) + \(\dfrac{14}{3}\) - \(\dfrac{28}{5}\) + \(1\))
C = -15.[(1 - 1) - (\(\dfrac{5}{7}\) - \(\dfrac{2}{7}\)) + \(\dfrac{14}{3}\) - \(\dfrac{28}{5}\)]
C = -15.[0 - \(\dfrac{3}{7}\) + \(\dfrac{14}{3}\) - \(\dfrac{28}{5}\)]
C = -15 . [- \(\dfrac{45}{105}\) + \(\dfrac{490}{105}\) - \(\dfrac{588}{105}\)]
C = -15. [ \(\dfrac{445}{105}\) - \(\dfrac{588}{105}\)]
C = - 15.(- \(\dfrac{143}{105}\))
C = \(\dfrac{143}{7}\)
C= 2-\(\dfrac{5}{3}\)+\(\dfrac{7}{6}\)-\(\dfrac{9}{10}\)+\(\dfrac{11}{15}\)-\(\dfrac{13}{21}\)+\(\dfrac{15}{28}\)-\(\dfrac{17}{36}\)+\(\dfrac{19}{45}\)
tính C
\(=2-\left(\dfrac{5}{3}-\dfrac{7}{6}+\dfrac{9}{10}-...-\dfrac{19}{45}\right)\)
\(=2-2\left(\dfrac{5}{6}-\dfrac{7}{12}+\dfrac{9}{20}-...-\dfrac{19}{90}\right)\)
\(=2-2\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{5}-...-\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=2-2\cdot\dfrac{4}{10}=2-\dfrac{8}{10}=2-\dfrac{4}{5}=\dfrac{6}{5}\)
Bài 1: Thực hiện phép tính:
a, \(\left(\dfrac{7}{20}+\dfrac{11}{15}-\dfrac{15}{12}\right):\left(\dfrac{11}{20}-\dfrac{26}{45}\right)\)
b, \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}:\dfrac{15-\dfrac{15}{11}+\dfrac{15}{121}}{16-\dfrac{16}{11}+\dfrac{16}{121}}\)
c, \(\dfrac{\dfrac{1}{9}-\dfrac{5}{6}-4}{\dfrac{7}{12}-\dfrac{1}{36}-10}\)
\(a,\left(\dfrac{7}{20}+\dfrac{11}{15}-\dfrac{15}{12}\right):\left(\dfrac{11}{20}-\dfrac{26}{45}\right).\)
\(=\left(\dfrac{21}{60}+\dfrac{44}{60}-\dfrac{75}{60}\right):\left(\dfrac{99}{180}-\dfrac{104}{180}\right).\)
\(=\left(\dfrac{65}{60}-\dfrac{75}{60}\right):\left(-\dfrac{5}{180}\right).\)
\(=-\dfrac{10}{60}:\left(-\dfrac{5}{180}\right).\)
\(=-\dfrac{1}{6}:\left(-\dfrac{1}{36}\right).\)
\(=-\dfrac{1}{6}.\left(-36\right).\)
\(=\dfrac{-1.\left(-36\right)}{6}=\dfrac{36}{6}=6.\)
Vậy......
\(b,\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}:\dfrac{15-\dfrac{15}{11}+\dfrac{15}{121}}{16-\dfrac{16}{11}+\dfrac{16}{121}}.\)
\(=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}:\dfrac{15\left(1-\dfrac{1}{11}+\dfrac{1}{121}\right)}{16\left(1-\dfrac{1}{11}+\dfrac{1}{121}\right)}.\)
\(=\dfrac{5}{8}:\dfrac{15}{16}.\)
\(=\dfrac{5}{8}.\dfrac{16}{15}=\dfrac{5.16}{8.15}=\dfrac{1.2}{1.3}=\dfrac{2}{3}.\)
Vậy......
c, (làm tương tự câu b).
~ Học tốt!!! ~
Bài 2: Tính nhanh:
a) \(\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot.....\cdot\dfrac{120}{121}\cdot\dfrac{143}{144}\)
b)\(\dfrac{5}{9}\cdot\dfrac{21}{25}\cdot\dfrac{45}{49}\cdot\dfrac{77}{81}\cdot.....\dfrac{357}{361}\cdot\dfrac{437}{441}\)
ai làm đúng mk dùng 3nick mk tick cho :))))
a) \(A=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.....\dfrac{120}{121}.\dfrac{143}{144}\)
= \(\dfrac{1.3.2.4.3.5.4.6....10.12.11.13}{2^2.3^2.4^2.5^2...11^2.12^2}\)
= \(\dfrac{1.2.12.13}{2^2.12^2}=\dfrac{13}{2.12}=\dfrac{13}{24}\)
b) \(B=\dfrac{5}{9}.\dfrac{21}{25}.\dfrac{45}{49}.\dfrac{77}{81}....\dfrac{357}{361}.\dfrac{437}{441}\)
= \(\dfrac{1.5.3.7.5.9.7.11.....17.21.19.23}{3^2.5^2.7^2....19^2.21^2}=\dfrac{1.3.21.23}{3^2.21^2}\)
= \(\dfrac{23}{3.21}=\dfrac{23}{63}\)
giúp mk nhé :)
1) \(\dfrac{x}{19}=\dfrac{y}{21}\) và 2x - y = 34
2)\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\) và 2x + 3y-z = 186
3)\(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{7}\) và 2x +3y - z = 372
1. \(\dfrac{x}{19}=\dfrac{y}{21};2x-y=34\)
Có: \(\dfrac{x}{19}=\dfrac{y}{21}\)
=> \(\dfrac{2x}{38}=\dfrac{y}{21}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
=> \(\dfrac{x}{19}=2=>x=2.19=38\)
=> \(\dfrac{y}{21}=2=>y=2.21=42\)
Vậy x= 38 ; y= 42
2. \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\);\(2x+3y-z=186\)
Có: \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
=> \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
=> \(\dfrac{x}{15}=3=>x=3.15=45\)
=>\(\dfrac{y}{20}=3=>y=3.20=60\)
=> \(\dfrac{z}{28}=3=>z=3.28=84\)
Vậy x=45;y=60;z=84
1) \(\dfrac{x}{19}=\dfrac{y}{21}\) và 2x -y =34
Từ \(\dfrac{x}{19}=\dfrac{y}{21}=>\dfrac{2x}{38}=\dfrac{y}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
=>\(\dfrac{2x}{38}=2=>2x=2.38=>2x=76=>x=76:2=>x=38\)
=>\(\dfrac{y}{21}=2=>y=2.21=>y=42\)
Vậy x=38; y=42
2)\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)và 2x+3y-z=186
Từ \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=>\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
=>\(\dfrac{2x}{30}=3=>2x=3.30=>2x=90=>x=90:2=>x=45\)
=>\(\dfrac{3y}{60}=3=>3y=3.60=>3y=180=>y=180:3=>y=60\)
=>\(\dfrac{z}{28}=3=>z=3.28=>z=84\)
Vậy x=45; y=60; z=84
3)\(\dfrac{x}{3}=\dfrac{y}{4}\) và\(\dfrac{y}{5}=\dfrac{z}{7}\)và 2x+3y-z=372
Từ\(\dfrac{x}{3}=\dfrac{y}{4}=>\dfrac{x}{15}=\dfrac{y}{20}\)
\(\dfrac{y}{5}=\dfrac{z}{7}=>\dfrac{y}{20}=\dfrac{z}{28}\)
=>\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=>\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{372}{62}=6\)
=>\(\dfrac{2x}{30}=6=>2x=6.30=>2x=180=>x=180:2=>x=90\)
=>\(\dfrac{3y}{60}=6=>3y=6.60=>3y=360=>y=360:3=>y=120\)
=>\(\dfrac{z}{28}=6=>z=6.28=>z=148\)
Vậy x=90; y=120; z=148
\(\dfrac{3}{15}.\dfrac{5}{9}:\dfrac{-18}{17}.\dfrac{14}{17}\)
\(\dfrac{12}{7}.\dfrac{7}{4}+\dfrac{35}{11}:\dfrac{245}{121}\)
giúp mình với
a: \(=\dfrac{1}{3}\cdot\dfrac{1}{3}\cdot\dfrac{-17}{18}\cdot\dfrac{14}{17}=\dfrac{-14}{18\cdot9}=\dfrac{-14}{162}=\dfrac{-7}{81}\)
b: \(=\dfrac{12}{4}+\dfrac{35}{11}\cdot\dfrac{121}{245}=3+\dfrac{11}{7}=\dfrac{32}{7}\)