Cho x,y>0 t/m:x+y>=6
Tìm min
3x + 2y + 6/x +8y
Cho x,y>0 ; x+y<=6
Tìm minB=\(\dfrac{x^2y+xy^2+24x+6y}{xy}\).
\(B=x+y+\dfrac{6}{x}+\dfrac{24}{y}=\left(\dfrac{3x}{2}+\dfrac{6}{x}\right)+\left(\dfrac{3y}{2}+\dfrac{24}{y}\right)-\dfrac{3}{2}\left(x+y\right)\)
\(B\ge2\sqrt{\dfrac{18x}{2x}}+2\sqrt{\dfrac{72y}{2y}}-\dfrac{3}{2}.6=15\)
\(B_{min}=15\) khi \(\left(x;y\right)=\left(2;4\right)\)
Cho đa thức x^3 +x^2y -2x^2-xy-y^2 +3y+x+2020
Tính giá trị của đa thức M:x+y-2=0
\(\Rightarrow x^3+x^2y-2x^2-xy-y^2+2y+y+x+2020\)
\(x^2.\left(x+y-2\right)-y\left(x+y-2\right)+y+x+2020\)(1)
Thay x+y-2=0 vào (1) , ta được :
\(x^2.0-y.0+y+x+2020\\ =0+y+x+2020\)
\(=x+y+2022-2\\ =\left(x+y-2\right)+2022\\ \)(2)
Thay x+y-2 vào (2), ta được
\(=0+2022=2022\)
_ Tham khảo thôi ậ, nếu sai thì mong mn thông cảm_
_# yum #_
x > 0 ; y > 0 ; x + y ≤ 6
Tìm Pmin = x + y + \(\dfrac{6}{x}\) + \(\dfrac{24}{y}\)
\(P=\dfrac{6}{x}+\dfrac{3}{2}x+\dfrac{24}{y}+\dfrac{3}{2}y-\dfrac{1}{2}\left(x+y\right)\ge2\sqrt{6.\dfrac{3}{2}}+2\sqrt{24.\dfrac{3}{2}}-\dfrac{1}{2}.6=15\Rightarrow min=15\Leftrightarrow x=2;y=4\)
Cho x,y,z t/m:x+y+z=6 và (x-1)3+(y-2)3+(z-3)3=0 .tính P=(x-1)2021+(y-2)2021+(z-3)2021
\(\hept{\begin{cases}x-1=a\\y-2=b\\z-3=c\end{cases}}\Rightarrow a+b+c=x+y+z-6=0\).
Ta có:
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\).
\(\Leftrightarrow\hept{\begin{cases}a=-b\\c=0\end{cases}}\)hoặc \(\hept{\begin{cases}b=-c\\a=0\end{cases}}\)hoặc \(\hept{\begin{cases}c=-a\\b=0\end{cases}}\).
Khi đó \(P=a^{2021}+b^{2021}+c^{2021}=0\).
Cho x>0, y>0 và x+y \(\ge\)6
Tìm giá trị lớn nhất của biểu thức:
\(P=5x+3y+\dfrac{12}{x}+\dfrac{16}{y}\)
`<=>2P=10x+6y+24/x+32/y`
`<=>2P=6x+24/x+2y+32/y+4x+4y`
`<=>2P=6(x+4/x)+2(y+16/y)+4(x+y)`
Áp dụng BĐT cosi:
`x+4/x>=4=>6(x+4/x)>=24`
`y+16/y>=8=>2(y+16/y)>=16`
Mà `x+y>=6=>4(x+y)>=24`
`=>2P>=24+16+24=64`
`=>P>=32`
Dấu "=" `<=>x=2,y=4`
Tìm x,y,z biết:a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{10}\)và y-x=6
Tìm x,y,z biết:b) \(\dfrac{x}{8}=\dfrac{y}{3}=\dfrac{z}{7}\)và x-2y+z=18
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
⇒\(\dfrac{y-x}{5-2}=\dfrac{6}{3}=2\)
\(\dfrac{x}{2}=2\Rightarrow x=4\)
\(\dfrac{y}{5}=2\Rightarrow y=10\)
\(\dfrac{z}{10}=2\Rightarrow z=20\)
b) Ta có: \(\dfrac{x}{8}=\dfrac{2y}{6}=\dfrac{z}{7}\)
\(\dfrac{x-2y+z}{8-6+7}=\dfrac{18}{9}=2\)
\(\dfrac{x}{8}=2\Rightarrow x=16\)
\(\dfrac{y}{3}=2\Rightarrow y=6\)
\(\dfrac{z}{7}=2\Rightarrow z=14\)
Giải hệ pt:
a)(x+√(x^2+4))(y+√(y^2+1))=2 và 27x^6=x^3-8y+2
b)(8x-3)√(2x-1) -y-4y^3=0 và 4x^2-8x+2y^3+y^2-2y+3=0
c) x(1+y-x)=-2y^2-y và x(√2y -2)=y(√(x-1)-2)
d) √(x+2y)+√(2x-y)+x^2y=√x+√3y+xy^2 và 2(1-y)√(x^2+2y-1)=y^2-2x-1
e)(y-2x+√y-√x)/√xy +1=0 và √(1-xy) +x^2-y^2=0
CÁC BẠN ƠI..GIÚP MK VS Ạ...MAI MK HOK R...CẢM ƠM TRƯỚC Ạ...☺️☺️☺️
cho x,y,z>0 và x+2y+3z≥10. Tìm min P= x+y+z+3/4x+9/8y+1/z
\(P=x+y+z+\frac{3}{4x}+\frac{9}{8y}+\frac{1}{z}\)
\(=\frac{3}{4}x+\frac{3}{4x}+\frac{1}{2}y+\frac{9}{8y}+\frac{1}{4}z+\frac{1}{z}+\frac{1}{4}x+\frac{1}{2}y+\frac{3}{4}z\)
\(\ge\frac{3}{2}\sqrt{x.\frac{1}{x}}+2\sqrt{\frac{1}{2}y.\frac{9}{8y}}+2\sqrt{\frac{1}{4}z.\frac{1}{z}}+\frac{1}{4}.10\)
\(=\frac{3}{2}+\frac{3}{2}+1+\frac{5}{2}=6,5\)
Dấu \(=\)khi \(\hept{\begin{cases}x=1\\y=1,5\\z=2\end{cases}}\).
Câu 26. Cho hai đường tròn (C):(x-2)^ 2 +(y-2)^ 2 =9;(C' ):x^ 2 +y^ 2 +4x-8y+11=0 ,biết (C) và (C') đối xứng nhau qua đường thẳng (a) .Phương trình của (a) là : A. 2x + 2y - 4 = 0 B.2x-y+3=0 . C. x + y - 4 = 0 . D. 2x + 2y = 0 .