`<=>2P=10x+6y+24/x+32/y`
`<=>2P=6x+24/x+2y+32/y+4x+4y`
`<=>2P=6(x+4/x)+2(y+16/y)+4(x+y)`
Áp dụng BĐT cosi:
`x+4/x>=4=>6(x+4/x)>=24`
`y+16/y>=8=>2(y+16/y)>=16`
Mà `x+y>=6=>4(x+y)>=24`
`=>2P>=24+16+24=64`
`=>P>=32`
Dấu "=" `<=>x=2,y=4`
`<=>2P=10x+6y+24/x+32/y`
`<=>2P=6x+24/x+2y+32/y+4x+4y`
`<=>2P=6(x+4/x)+2(y+16/y)+4(x+y)`
Áp dụng BĐT cosi:
`x+4/x>=4=>6(x+4/x)>=24`
`y+16/y>=8=>2(y+16/y)>=16`
Mà `x+y>=6=>4(x+y)>=24`
`=>2P>=24+16+24=64`
`=>P>=32`
Dấu "=" `<=>x=2,y=4`
cho x,y là hai số thực dương thỏa mãn x+y≤xy.Tìm giá trị lớn nhất của biểu thức M=\(\dfrac{1}{2x^2+3y^2}+\dfrac{1}{3x^2+2y^2}\)
x > 0 ; y > 0 ; x + y ≤ 6
Tìm Pmin = x + y + \(\dfrac{6}{x}\) + \(\dfrac{24}{y}\)
Cho hệ phương trình \(\left\{{}\begin{matrix}x-y=4\\2x+3y=5m+3\end{matrix}\right.\). Tìm \(m\) để hệ phương trình có nghiệm \(\left(x;y\right)\) sao cho biểu thức \(A=\dfrac{2019}{x^2+y^2-4}\) đạt giá trị lớn nhất.
Cho x,y>0 ; x+y<=6
Tìm minB=\(\dfrac{x^2y+xy^2+24x+6y}{xy}\).
Cho x,y là các số thực dương thỏa mãn x + y ≤ 3. Tìm giá trị nhỏ nhất của biểu thức Q = \(x^2+y^2-9x-12y+\dfrac{16}{2x+y}+25\)
Cho ba số thực x,y,z thỏa mãn x ≥ 0, y ≥ 0, z ≥ 2 và x + y + z = 4 . Tìm giá trị lớn nhất của biểu thức H = xyz
Cho x,y là các số thực dương thỏa mãn xy+1≤ x. Tìm giá trị lớn nhất của biểu thức Q=\(\dfrac{x+y}{\sqrt{3x^2-xy+y^2}}\)
Cho các số thực dương x,y > 1 . Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)
Cho x,y thỏa mãn 0 < x < 1; 0<y<1 và \(\dfrac{x}{1-x}+\dfrac{y}{1-y}=1\). Tìm giá trị của P = \(x+y+\sqrt{x^2-xy+y^2}\)