Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
VUX NA

Cho ba số thực x,y,z thỏa mãn x ≥ 0, y ≥ 0, z ≥ 2 và x + y + z = 4 . Tìm giá trị lớn nhất của biểu thức H = xyz

Nguyễn Hoàng Minh
7 tháng 9 2021 lúc 7:40

\(4=x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow\sqrt[3]{xyz}\le\dfrac{4}{3}\Leftrightarrow xyz\le\dfrac{64}{27}\)(BĐT cauchy)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{4}{3}\)

Akai Haruma
7 tháng 9 2021 lúc 7:48

Lời giải:

Áp dụng BĐT AM-GM:
$xy\le \frac{(x+y)^2}{4}=\frac{(4-z)^2}{4}$

$\Rightarrow H\leq \frac{z(4-z)^2}{4}$

Tiếp tục áp dụng BĐT AM-GM:
$z(4-z)\leq \frac{(z+4-z)^2}{4}=4$

$4-z\leq 2$ do $z\geq 2$

$\Rightarrow \frac{z(4-z)^2}{4}\leq \frac{4.2}{4}=2$

Hay $H\leq 2$ 

Vậy $H_{\max}=2$ khi $(x,y,z)=(1,1,2)$


Các câu hỏi tương tự
VUX NA
Xem chi tiết
VUX NA
Xem chi tiết
hoàng minh chính
Xem chi tiết
VUX NA
Xem chi tiết
VUX NA
Xem chi tiết
Nhật Minh Trần
Xem chi tiết
Nhật Minh Trần
Xem chi tiết
Trần Anh Hoàng
Xem chi tiết
Dieren
Xem chi tiết