Bt1 tìm x
a) (3/x+1/5).(x-1/2)=0
b)(x-3/2).(2x+1)>0
c)(x-2).(x-4)<0
d)(3x+1/5).(2x-1)<0
e)(x-1).(3x-5)<0
bài 1 tìm x
a)6x^2-72x=0
b)-2x^4+16x=0
c)x(x-5)-(x-3)^2=0
d)(x-2)^3-(x-2)(x^2+2x+4)=0
a) \(6x^2-72x=0\)
\(6x\left(x-12\right)=0\)
\(6x=0\) hoặc \(x-72=0\)
*) \(6x=0\)
\(x=0\)
*) \(x-12=0\)
\(x=12\)
Vậy \(x=0;x=12\)
b) \(-2x^4+16x=0\)
\(-2x\left(x^3-8\right)=0\)
\(-2x=0\) hoặc \(x^3-8=0\)
*) \(-2x=0\)
\(x=0\)
*) \(x^3-8=0\)
\(x^3=8\)
\(x=2\)
Vậy \(x=0;x=2\)
c) \(x\left(x-5\right)-\left(x-3\right)^2=0\)
\(x^2-5x-x^2+6x-9=0\)
\(x-9=0\)
\(x=9\)
d) \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)=0\)
\(x^3-6x^2+12x-8-x^3+8=0\)
\(-6x^2+12x=0\)
\(-6x\left(x-2\right)=0\)
\(-6x=0\) hoặc \(x-2=0\)
*) \(-6x=0\)
\(x=0\)
*) \(x-2=0\)
\(x=2\)
Vậy \(x=0;x=2\)
Bài 1: Tìm x
a) 3(x-1)^2.3x(x-5)=0
b) (x+3)^2-5x-15=0
c) 2x^5-4x^3+2x=0
a) \(3\left(x-1\right)^2\cdot3x\left(x-5\right)=0\)
\(\Rightarrow9x\left(x-1\right)^2\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=5\end{matrix}\right.\)
b) \(\left(x+3\right)^2-5x-15=0\)
\(\Rightarrow\left(x+3\right)^2-5\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x+3-5\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
c) \(2x^5-4x^3+2x=0\)
\(\Rightarrow2x\left(x^4-2x^2+1\right)=0\)
\(\Rightarrow2x\left[\left(x^2\right)^2-2\cdot x^2\cdot1+1^2\right]=0\)
\(\Rightarrow2x\left(x^2-1\right)^2=0\)
\(\Rightarrow2x\left(x-1\right)^2\left(x+1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
\(\text{#}Toru\)
Tìm x
a) 3x(4x - 3) - 2x(5 - 6x) = 0
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
d) 3x (x + 1) - 5x(3 - x) + 6(x^2 + 2x + 3) = 0
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
b) 5(2x-3)+4x(x-2)+2x(3-2x)=0
\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
\(\Leftrightarrow x=\dfrac{15}{8}\)
vậy x=\(\dfrac{15}{8}\)
c)3x(2-x)+2x(x-1)=5x(x+3)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\\ \Leftrightarrow4x-x^2=5x^2+15x\\ \Leftrightarrow4x-x^2-5x^2-15x=0\\ \)
\(\Leftrightarrow-6x^2-11x=0\\ \Leftrightarrow-x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-11}{6}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{-11}{6}\)
TÌM X
a. 3.(x^2-x+2)-x.(2+3x)=0
b. (x-1)^2 + (x-1)(x+2)=0
c. 2x^3 +3x^2+2x+3=0
d. 2x^2+x=6
\(a,\Rightarrow3x^2-3x+6-2x-3x^2=0\\ \Rightarrow-5x=-6\Rightarrow x=\dfrac{6}{5}\\ b,\Rightarrow\left(x-1\right)\left(x-1+x+2\right)=0\\ \Rightarrow\left(x-2\right)\left(2x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{2}\end{matrix}\right.\\ c,\Rightarrow x^2\left(2x+3\right)+\left(2x+3\right)=0\\ \Rightarrow\left(x^2+1\right)\left(2x+3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\2x+3=0\end{matrix}\right.\\ \Rightarrow x=-\dfrac{3}{2}\\ d,\Rightarrow2x^2+x-6=0\\ \Rightarrow2x^2+4x-3x-6=0\\ \Rightarrow2x\left(x+2\right)-3\left(x+2\right)=0\\ \Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
Tìm x
a, 3/4x*(x2-9)=0
b, x3-16x=0
c, (x-1)(x+2)-x-2=0
d, 3x3-27x=0
e, x2(x+1)+2x(x+1)=0
f, x(2x-3)-2(3-2x)=0
c: =>(x-1)(x+1)=0
hay \(x\in\left\{1;-1\right\}\)
a,
\(=\dfrac{3}{4x}.\left(x-3\right)\left(x+3\right)\)=0
\(\left\{{}\begin{matrix}\dfrac{3}{4x}=0\\x-3=0\\x+3=0\end{matrix}\right.\)
=>\(x=\left\{3,-3\right\}\)
b,
\(x^3-16x=0\\x\left(x^2-16\right)\\ x\left(x-4\right)\left(x+4\right)\)
\(\left\{{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)
=>\(x=\left\{-4,0,4\right\}\)
d,
\(3x^3-27x=0\\ 3x\left(x^2-9\right)=0\\ 3x\left(x-3\right)\left(x+3\right)=0\)
\(\left\{{}\begin{matrix}3x=0\\x-3=0\\x+3=0\end{matrix}\right.\)
=>\(x=\left\{-3,0,3\right\}\)
e,
\(x^2+\left(x+1\right)+2x\left(x+1\right)=0\\ x\left(x+1\right)\left(x+2\right)=0\)
\(\left\{{}\begin{matrix}x=0\\x+1=0\\x+2=0\end{matrix}\right.\)
=>\(x=\left\{-2,-1,0\right\}\)
f,
\(x\left(2x-3\right)-2\left(3-2x\right)=0\\ \left(2x-3\right)\left(x+2\right)=0\)
\(\left\{{}\begin{matrix}2x-3=0\\x+2=0\end{matrix}\right.\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
bài 3: tìm x , biết:
a)(x+3).(2x-1)-(x-3).(x+1)=0
b)(x+4).(2x-3)-3.(x-2).(x+2)=0
c)x.(x-5).(x+5)-(x+2).(x2-2x+4)=17
a) \(\left(x+3\right)\left(2x-1\right)-\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow2x^2+5x-3-x^2+2x+3=0\)
\(\Leftrightarrow x^2+7x=0\Leftrightarrow x\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\end{matrix}\right.\)
b) \(\left(x+4\right)\left(2x-3\right)-3\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow2x^2+5x-12-3x^2+12=0\)
\(\Leftrightarrow x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Bài 1: Tìm x
a) (2x-1) ² - 25 = 0
b) 3x (x-1) + x - 1 = 0
c) 2(x+3) - x ² - 3x = 0
d) x(x - 2) + 3x - 6 = 0
e) 4x ² - 4x +1 = 0
f) x +5x ² = 0
g) x ² 2x -3 = 0
a) \(\left(2x-1\right)^2-25=0\)
⇔ \(\left(2x-1\right)^2-5^2=0\)
⇔ \(\left(2x-1-5\right)\left(2x-1+5\right)=0\)
⇒ \(2x-1-5=0\) hoặc \(2x-1+5=0\)
⇔ \(x=3\) hoặc \(x=-2\)
Bài 1: Tìm x
a) (2x-1) ² - 25 = 0
<=> (2x-1)2 = 25
<=> 2x-1 = 5 hay 2x-1 =-5
<=> 2x= 6 hay 2x=-4
<=> x=3 hay x= -2
Vậy S={3; -2}
b) 3x (x-1) + x - 1 = 0
<=> (x-1)(3x+1)=0
<=> x-1=0 hay 3x+1=0
<=> x=1 hay 3x=-1
<=> x=1 hay x=\(\dfrac{-1}{3}\)
Vậy S={1;\(\dfrac{-1}{3}\)}
c) 2(x+3) - x ² - 3x = 0
<=> 2(x+3)- x(x+3)=0
<=> (x+3)(2-x)=0
<=> x+3=0 hay 2-x=0
<=> x=-3 hay x=2
Vậy S={-3;2}
d) x(x - 2) + 3x - 6 = 0
<=> x(x-2)+3(x-2)=0
<=> (x-2)(x+3)=0
<=> x-2=0 hay x+3=0
<=> x=2 hay x=-3
Vậy S={2;-3}
e) 4x ² - 4x +1 = 0
<=> (2x-1)2=0
<=> 2x-1=0
<=> 2x=1
<=> x=\(\dfrac{1}{2}\)
Vậy S={\(\dfrac{1}{2}\)}
f) x +5x2 = 0
<=> x(1+5x)=0
<=>x=0 hay 1+5x=0
<=> x=0 hay 5x=-1
<=> x=0 hay x= \(\dfrac{-1}{5}\)
Vậy S={0;\(\dfrac{-1}{5}\)}
g) x ²+ 2x -3 = 0
<=> x2-x+3x-3=0
<=> x(x-1)+3(x-1)=0
<=> (x-1)(x+3)=0
<=> x-1=0 hay x+3=0
<=> x=1 hay x=-3
Vậy S={1;-3}
b) \(\text{3x (x-1) + x - 1 = 0}\)
\(\Rightarrow3x\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(3x+1\right)\left(x-1\right)=0\\\)
\(\Rightarrow\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)
c) \(\text{2(x+3) - x ² - 3x = 0}\)
\(\Rightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Rightarrow\left(2-x\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
d) \(\text{x(x - 2) + 3x - 6 = 0}\)
\(\Rightarrow x(x - 2) + 3(x - 2) = 0\\ \Rightarrow\left(x+3\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
e)
\(\text{4x ² - 4x +1 = 0}\\ \Rightarrow\left(2x-1\right)^2=0\\ \Rightarrow2x-1=0\\ \Rightarrow x=0,5\)
f) \(\text{x +5x ² = 0}\)
\(\Rightarrow x\left(x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
viết lại câu g đi bạn
Tìm x biết:
a) x(x-3)+2x-6=0
b) (x+1)2-4(x+1)=0
c) (2x+5)(4x+3)-8x(x+3)=10
a: \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
b: \(\left(x+1\right)^2-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
tìm x
a) 3.(x-3)-4x+12=0
b)(x+2)^2-(x+2).(x-2) =0
c)x^3+3x=3x^2+1
d)2/3x.(x^2-4)=0
e)(2x-3)^2-(+5)^2=0
\(a,=3x-9-4x+12=-x+3=0\)
\(\Leftrightarrow x=3\)
Vậy ..
\(b,=\left(x+2\right)\left(x+2-x+2\right)=4\left(x+2\right)=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy ..
\(c,=x^3-3x^2+3x-1=\left(x-1\right)^3=0\)
\(\Leftrightarrow x=1\)
Vậy ..
\(d,\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy ..
\(e,=\left(2x-3-5\right)\left(2x-3+5\right)=\left(2x-8\right)\left(2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{2}=4\\x=-\dfrac{2}{2}=-1\end{matrix}\right.\)
Vậy ...
a) Ta có: 3(x-3)-4x+12=0
\(\Leftrightarrow3\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow x-3=0\)
hay x=3
Vậy: S={3}
b) Ta có: \(\left(x+2\right)^2-\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4=0\)
\(\Leftrightarrow4x=-8\)
hay x=-2
Vậy: S={-2}
c) Ta có: \(x^3+3x=3x^2+1\)
\(\Leftrightarrow x^3-3x^2+3x-1=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
Vậy: S={1}
d) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: S={0;2;-2}
a) 3.(x-3)-4x+12=0
=> 3x - 9 - 4x + 12 = 0
=> -x + 3 = 0
=> x = 3
b) (x+2)^2-(x+2).(x-2) =0
\(\Rightarrow\left(x+2\right)^2-x^2+4=0\)
\(\Rightarrow x^2+4x+4-x^2+4=0\)
=> 4x + 8 = 0
=> x = -2
c) x^3+3x=3x^2+1
\(\Rightarrow x^3+3x-3x^2-1=0\)
\(\Rightarrow\left(x-1\right)^3=0\)
=> x = 1
d) \(\dfrac{2}{3}x\left(x^2-4\right)=0\)
\(\Rightarrow\dfrac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)
=> x = 0 hoặc x = 2 hoặc x = -2
e) \(\left(2x-3\right)^2-5^2=0\)
\(\Rightarrow\left(2x-8\right)\left(2x+2\right)=0\)
=> x = 4 hoăc x = -1
Tìm x:
a)(x+2)^2-2(x+2)(x-5)=0
b)2x^2+3x-5=0
c)x+2√2x^2+2x^3=0
d)(3x-1)^2-4(x+5)^2=0
a: \(\Leftrightarrow\left(x+2\right)\left(12-x\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
b: \(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)