gtri của a thỏa mãn:a/b=-2.5/4.5 và a+b=1.44
GTRI của a thỏa mãn:
a/b=-1,2/3,2 và b-a 5,94
kqua la dc
Cho a,b,c là các số thực thỏa mãn:a≥4;b≥;c≥6 và \(a^2+b^2+c^2=90\).Tìm GTNN P=a+b+c
Đặt \(\left(x;y;z\right)=\left(a-4;b-5;c-6\right)\) \(\Rightarrow x;y;z\ge0\)
\(\left(x+4\right)^2+\left(y+5\right)^2+\left(z+6\right)^2=90\)
\(\Leftrightarrow x^2+y^2+z^2+8x+10y+12z=13\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2xz+2yz+12\left(x+y+z\right)=13+2\left(xy+xz+yz\right)+4x+2y\)
\(\Leftrightarrow\left(x+y+z\right)^2+12\left(x+y+z\right)=13+2\left(xy+xz+yz\right)+2\left(2x+y\right)\ge13\)
\(\Leftrightarrow\left(x+y+z\right)^2+12\left(x+y+z\right)-13\ge0\)
\(\Leftrightarrow\left(x+y+z+13\right)\left(x+y+z-1\right)\ge0\)
\(\Leftrightarrow x+y+z\ge1\)
\(\Leftrightarrow a-4+b-5+c-6\ge1\)
\(\Leftrightarrow a+b+c\ge16\)
\(\Rightarrow P_{min}=16\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) hay \(\left(a;b;c\right)=\left(4;5;7\right)\)
Tìm 3 số nguyên a,b,c thỏa mãn:a+b=-4;b+c=-6;c+a=12
\(a+b=-4;b+c=-6;c+a=12\\ \Rightarrow a+b+b+c+c+a=\left(-6\right)+\left(-4\right)+12=2\\ \Rightarrow2\left(a+b+c\right)=2\\ \Rightarrow a+b+c=1\)
\(\Rightarrow c=1-\left(-4\right)=5\\ \Rightarrow b=\left(-6\right)-5=-11\\ \Rightarrow a=7\)
cho a,b,c là 3 số nguyên dương thỏa mãn.tổng của 160 và bình phương của của a bằng tổng của 5 và bình phương của b
Tổng của 320 và bình phương của a bằng tổng của 5 và bình phương của c .
Tìm a
160+a2=5+b2
<=> b2-a2=155
<=> (b-a)(b+a)=155 (1).
Lại có b-a,b+a là các số nguyên, b-a<b+a (2).
Từ (1),(2) ta có bảng:
b-a 1 5
b+a 155 31
a 77 13
Với a=77 thì c không nguyên (loại).
Với a=13 thì c=22 (t/m).
Vậy a=13.
Chúc bạn học tốt.
cho a,b,c là 3 số nguyên dương thỏa mãn.tổng của 160 và bình phương của của a bằng tổng của 5 và bình phương của b
Tổng của 320 và bình phương của a bằng tổng của 5 và bình phương của c .
Tìm a
a)Cho a<b;c<d,chứng tỏ:a+c<b+d
b)Cho a,b,c,d >0,thỏa mãn:a<b,c<d.Chứng tỏ:ac<bd
a)a<b (1)
c<d (2)
Cộng từng vế các BĐT (1) và (2)
=>a+c<b+d (đpcm)
câu b) tương tự,dùng phép nhân
Cho a,b,c là các số thực dương thỏa mãn:a+b+c=1.CMR:\(\frac{ab+c}{a+b}+\frac{bc+a}{b+c}+\frac{ac+b}{a+c}\)≥2
Có: \(VT=\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(c+a\right)}{b+c}+\frac{\left(c+b\right)\left(a+b\right)}{a+c}\) (thay a+ b+c=1 vào r phân tích thành nhân tử)
Lại có: Theo Cô si \(\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(c+a\right)}{b+c}\ge2\left(c+a\right)\)
Tương tự với hai BĐT còn lại và cộng theo vế được: \(2VT\ge4\Leftrightarrow VT\ge2^{\left(đpcm\right)}\)
"=" <=> a = b = c = 1/3
Đặt \(P=\frac{ab+c}{a+b}+\frac{bc+a}{b+c}+\frac{ac+b}{a+c}=\frac{ab+c\left(a+b+c\right)}{a+b}+\frac{bc+a\left(a+b+c\right)}{b+c}+\frac{ac+b\left(a+b+c\right)}{a+c}\)
\(=\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\)
Ta có:
\(\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}\ge2\left(a+c\right)\)
\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)
\(\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(b+c\right)\)
Cộng vế với vế
\(2P\ge4\left(a+b+c\right)=4\Rightarrow P\ge2\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Cho a,b,c là các số thực dương thỏa mãn:a+b+c=3.CMR:\(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\)≤1
Bài lớp 8 thật hả? :(
\(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)
\(\Leftrightarrow\frac{a}{4-a}+\frac{b}{4-b}+\frac{c}{4-c}\le1\)
\(\Leftrightarrow a\left(4-b\right)\left(4-c\right)+b\left(4-a\right)\left(4-c\right)+c\left(4-a\right)\left(4-b\right)\le\left(4-a\right)\left(4-b\right)\left(4-c\right)\)
\(\Leftrightarrow a^2b+ac^2+b^2c+abc\le4\) (1)
Ta cần chứng minh (1)
Không mất tính tổng quát, giả sử \(a\le c\le b\)
\(\Rightarrow a\left(a-c\right)\left(b-c\right)\le0\)
\(\Leftrightarrow a^2b+ac^2\le a^2c+abc\)
\(\Leftrightarrow a^2b+ac^2+b^2c+abc\le a^2c+abc+b^2c+abc\)
\(\Leftrightarrow a^2b+ac^2+b^2c+abc\le c\left(a+b\right)^2\)
\(\Leftrightarrow a^2b+ac^2+b^2c+abc\le\frac{1}{2}.2c\left(a+b\right)\left(a+b\right)\le\frac{1}{2}.\frac{\left(2c+a+b+a+b\right)^3}{27}\)
\(\Leftrightarrow a^2b+ac^2+b^2c+abc\le\frac{1}{2}.\frac{8.3^3}{27}=4\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a,b,c là các số thực dương thỏa mãn:a+b+c=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).CMR:(b+c-a)(c+a-b)(a+b-c)≤1
Do biểu thức đề bài và BĐT đều mang tính đối xứng, không mất tính tổng quát giả sử \(a\ge b\ge c\)
Đặt \(\left(x;y;z\right)=\left(b+c-a;c+a-b;a+b-c\right)\) \(\Rightarrow\left\{{}\begin{matrix}y>0\\z>0\end{matrix}\right.\)
Ta cần chứng minh \(xyz\le1\)
Nếu \(x\le0\) thì \(xyz\le0\Rightarrow xyz< 1\) BĐT hiển nhiên đúng
Nếu \(x>0\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\) \(\Rightarrow x+y+z=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\)
\(\Rightarrow x+y+z\le\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)
\(\Leftrightarrow\sqrt{xyz}\left(x+y+z\right)\le\sqrt{x}+\sqrt{y}+\sqrt{z}\)
\(\Leftrightarrow xyz\left(x+y+z\right)^2\le\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)\)
\(\Leftrightarrow xyz\left(x+y+z\right)\le3\)
\(\Leftrightarrow xyz.3\sqrt[3]{xyz}\le xyz\left(x+y+z\right)\le3\)
\(\Leftrightarrow xyz\sqrt[3]{xyz}\le1\Leftrightarrow xyz\le1\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)