Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thị Thế Ngọc

Cho a,b,c là các số thực dương thỏa mãn:a+b+c=1.CMR:\(\frac{ab+c}{a+b}+\frac{bc+a}{b+c}+\frac{ac+b}{a+c}\)≥2

tthnew
19 tháng 6 2019 lúc 14:38

Có: \(VT=\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(c+a\right)}{b+c}+\frac{\left(c+b\right)\left(a+b\right)}{a+c}\) (thay a+ b+c=1 vào r phân tích thành nhân tử)

Lại có: Theo Cô si \(\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(c+a\right)}{b+c}\ge2\left(c+a\right)\)

Tương tự với hai BĐT còn lại và cộng theo vế được: \(2VT\ge4\Leftrightarrow VT\ge2^{\left(đpcm\right)}\)

"=" <=> a = b = c = 1/3

Nguyễn Việt Lâm
19 tháng 6 2019 lúc 14:43

Đặt \(P=\frac{ab+c}{a+b}+\frac{bc+a}{b+c}+\frac{ac+b}{a+c}=\frac{ab+c\left(a+b+c\right)}{a+b}+\frac{bc+a\left(a+b+c\right)}{b+c}+\frac{ac+b\left(a+b+c\right)}{a+c}\)

\(=\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\)

Ta có:

\(\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}\ge2\left(a+c\right)\)

\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)

\(\frac{\left(a+c\right)\left(b+c\right)}{a+b}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(b+c\right)\)

Cộng vế với vế

\(2P\ge4\left(a+b+c\right)=4\Rightarrow P\ge2\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)