Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thị Thế Ngọc

Cho a,b,c là các số thực dương thỏa mãn:a+b+c=3.CMR:\(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\)≤1

Nguyễn Việt Lâm
19 tháng 6 2019 lúc 11:23

Bài lớp 8 thật hả? :(

\(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)

\(\Leftrightarrow\frac{a}{4-a}+\frac{b}{4-b}+\frac{c}{4-c}\le1\)

\(\Leftrightarrow a\left(4-b\right)\left(4-c\right)+b\left(4-a\right)\left(4-c\right)+c\left(4-a\right)\left(4-b\right)\le\left(4-a\right)\left(4-b\right)\left(4-c\right)\)

\(\Leftrightarrow a^2b+ac^2+b^2c+abc\le4\) (1)

Ta cần chứng minh (1)

Không mất tính tổng quát, giả sử \(a\le c\le b\)

\(\Rightarrow a\left(a-c\right)\left(b-c\right)\le0\)

\(\Leftrightarrow a^2b+ac^2\le a^2c+abc\)

\(\Leftrightarrow a^2b+ac^2+b^2c+abc\le a^2c+abc+b^2c+abc\)

\(\Leftrightarrow a^2b+ac^2+b^2c+abc\le c\left(a+b\right)^2\)

\(\Leftrightarrow a^2b+ac^2+b^2c+abc\le\frac{1}{2}.2c\left(a+b\right)\left(a+b\right)\le\frac{1}{2}.\frac{\left(2c+a+b+a+b\right)^3}{27}\)

\(\Leftrightarrow a^2b+ac^2+b^2c+abc\le\frac{1}{2}.\frac{8.3^3}{27}=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)


Các câu hỏi tương tự
Lê Thị Thế Ngọc
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết
Sơn Khuê
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết