Cho a,b thỏa ab=1; a+b\(\ne\) 0 Tính
\(P=\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{1}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Cho a , b > 0 thỏa mãn 4 a + b + căn ab=1 . Tìm GTNN 1/ab
Cho a , b > 0 thỏa mãn 4 a + b + căn ab=1 . Tìm GTNN 1/ab
Ta có: \(1=4\left(a+b\right)+\sqrt{ab}\ge4.2\sqrt{ab}+\sqrt{ab}=9\sqrt{ab}\Leftrightarrow\sqrt{ab}\le\dfrac{1}{9}\Leftrightarrow ab\le\dfrac{1}{81}\)
\(\Rightarrow\dfrac{1}{ab}\ge\dfrac{1}{\dfrac{1}{81}}=81\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\dfrac{1}{9}\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
cho a,b là các số thực dương thỏa mãn ab>=1
chứng minh: 1/(1+a^2)+1/(1+b^2)>=2(1+ab)
\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}=\dfrac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}=1-\dfrac{a^2b^2-1}{a^2b^2+a^2+b^2+1}\ge1-\dfrac{a^2b^2-1}{a^2b^2+2ab+1}=\dfrac{2}{ab+1}\)
Dấu "=" xảy ra khi \(a=b\) hoặc \(ab=1\)
\(< =>VT< =>\dfrac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}=\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\)
\(VT\ge VP\)(giả thiết)
\(< =>\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\ge\dfrac{2}{1+ab}\)
\(< =>a^2+b^2+2+a^3b+ab^3+2ab-2a^2-2b^2-2a^2b^2-2\ge0\)
\(< =>\left(a-b^{ }\right)^2\left(ab-1\right)\ge0\)(luôn đúng với mọi a,b là các số thực dương thỏa mãn \(ab\ge1\))
\(\)
cho 2 số dương a,b thỏa a+b<2. Tìm GTNN: M=1/(a^2+b^2) + ab + 2/(ab)
cho a,b là các số dương thỏa mãn a+b ≤1
CM: M=ab +1/ab ≥17/4
\(M=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2.\sqrt{ab.\dfrac{1}{16ab}}+\dfrac{15}{16.\dfrac{\left(a+b\right)^2}{4}}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)
dấu = xảy ra khi x=y=2
tick mik nha
Ta có bất đẳng thức phụ: \(ab\le\dfrac{\left(a+b\right)^2}{4}\le\dfrac{1}{4}\)
Áp dụng bất đẳng thức Cauchy cho 2 số dương:
\(ab+\dfrac{1}{ab}=16ab+\dfrac{1}{ab}-15ab\ge2\sqrt{16ab.\dfrac{1}{ab}}-15.\dfrac{1}{4}=8-\dfrac{15}{4}=\dfrac{17}{4}\)
bài 1: tìm tất cả các cặp số thực (a,b) thỏa mãn: a2+b2+9=ab+3a+3b
bài 2: cho các số thực a,b,c thỏa mãn (a+b+c)2=3(ab+bc+ca). chứng minh a=b=c
Bài 2 :
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca
<=> a^2 + b^2 + c^2 = ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca
<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0
<=> a = b = c
Bài 1 :
a^2 + b^2 + 9 = ab + 3a + 3b
<=> 2a^2 + 2b^2 + 18 = 2ab + 6a + 6b
<=> a^2 - 2ab + b^2 + a^2 - 6a + 9 + b^2 - 6a + 9 = 0
<=> ( a - b)^2 + ( a - 3)^2 + ( b - 3)^2 = 0
Dấu ''='' xảy ra khi a = b = 3
1.
\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)
2.
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Cho hai số nguyên a>b thỏa mãn (ab-1, a+b)=(ab+1, a-b)=1. CMR: (a+b)2 + (ab-1)2 không là số chính phương
Mọi người giúp em với, em cần gấp lắm ạ. Em cảm ơn mọi người nhiều ạ
cho a,b>0 thỏa ab\(\ge\)4
so sánh
\(\dfrac{1}{2+a^2}\)+\(\dfrac{1}{2+b^2}\)và \(\dfrac{2}{2+ab}\)
a, cho các số a,b,c thỏa mãn 3/a+b = 2 /b+c = 1 / c+ (giả thuyết các tỉ số đều có nghĩa ) Tính giá trị biếu thức P = a + b - 2019c/ a + b + 2018c
b, Cho ab,ac ( c khác 0 ) là các số thỏa mãn điều kiện ab/a+b = bc / b+c
\(a,\dfrac{3}{a+b}=\dfrac{2}{b+c}=\dfrac{1}{c+a}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{c+a}{1}=\dfrac{2\left(a+b+c\right)}{6}=\dfrac{a+b+c}{3}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{a+b+c}{3}\\ \Rightarrow3\left(a+b+c\right)=3\left(a+b\right)\\ \Rightarrow3\left(a+b\right)+3c=3\left(a+b\right)\\ \Rightarrow3c=0\\ \Rightarrow c=0\)
Vậy \(P=\dfrac{a+b-2019c}{a+b+2018c}=\dfrac{a+b}{a+b}=1\)