Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tèn tén ten
Xem chi tiết
Nguyễn Anh Duy
9 tháng 11 2016 lúc 19:12

Giả sử \(x,y,z\in Q,x=\frac{a}{b},b>0,y=\frac{c}{d},d>0,z=\frac{h}{g},g>0.\)

a) Nếu \(x=y\), tức là \(\frac{a}{b}=\frac{c}{d}\), thì ta suy ra \(\frac{a.d.g}{b.d.g}=\frac{b.c.g}{b.d.g}\left(1\right)\)

Xét \(x+z=\frac{a}{b}+\frac{h}{g}=\frac{a.d.g}{b.d.g}+\frac{b.d.h}{b.d.g}\left(2\right)\)

Thay kết quả \(\left(1\right)\) vào vế phải của \(\left(2\right)\) ta được:

\(x+z=\frac{b.c.g}{b.d.g}+\frac{b.d.h}{b.d.g}=\frac{c}{d}+\frac{h}{g}\Rightarrow x+z=y+z\)

b) Ngược lại, nếu \(x+z=y+z,\) tức là \(\frac{a}{b}+\frac{h}{g}=\frac{c}{d}+\frac{h}{g},\) thì ta suy ra

\(\frac{a.d.g}{b.d.g}+\frac{b.d.h}{b.d.g}=\frac{b.c.g}{b.d.g}+\frac{b.d.h}{b.d.g}\)

\(\Rightarrow\frac{a.d.g+b.d.h}{b.d.g}=\frac{b.c.g+b.d.h}{b.d.g}\)

\(\Rightarrow a.d.g+b.d.h=b.c.g+b.d.h\left(3\right)\)

Theo luật đơn giản ước của phép cộng các số nguyên, từ đẳng thức \(\left(3\right)\) ta có: \(a.d.g=b.c.g\). Do đó:

\(\frac{a.d.g}{b.d.g}=\frac{b.c.g}{b.d.g}\)

Suy ra \(\frac{a}{b}=\frac{c}{d}\)

 

Isolde Moria
9 tháng 11 2016 lúc 19:05

Ta có :

(+) \(x=y\)

\(\Rightarrow\begin{cases}x+z=x+z\\y+z=x+z\end{cases}\)

=> x+z=y+z

(+) x+z=y+z

\(\Rightarrow x+z-z=y+z-z\)

=> x = y

tèn tén ten
9 tháng 11 2016 lúc 19:15

Thanks nhưng còn cả mấy chục bài tại cô giao nhiều quá hai chú giúp nhé

Dương Thị Ngà
Xem chi tiết
Phạm Hương Trang
Xem chi tiết
Nguyễn Anh Quân
24 tháng 10 2021 lúc 19:44

C

Trương Lê Quỳnh Anh
Xem chi tiết
Lê Trung Quyền
24 tháng 3 2020 lúc 22:11

vì x,y là các số dương =>x,y>0

ta có x>y(gt)=>x^2>xy

mà xy >y^2 ( vì x>y) =>x^2>y^2

vì x,y >0 và x^2>y^2 =>căn x^2 > căn y^2 => x>y (đpcm)

Khách vãng lai đã xóa
Trương Lê Quỳnh Anh
25 tháng 3 2020 lúc 9:31

Thanks nhé!!

Khách vãng lai đã xóa
Phùng Thị Loan Oanh
Xem chi tiết
Đặng Tuấn Anh
30 tháng 7 2017 lúc 16:46

Vì 1 số bất kì nhân với 0 thì đều bằng 0 

nên \(x\times y=0\Rightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)

\(\left(2a-3\right)\times\left(\frac{3}{4}a+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2a-3=0\\\frac{3}{4}a+1=0\end{cases}\Rightarrow\orbr{\begin{cases}a=1,5\\a=-\frac{4}{3}\end{cases}}}\)

Vũ Hà Linh
Xem chi tiết
truongvinamilk12
28 tháng 12 2020 lúc 14:50

a.

- Áp dụng quy tắc chuyển vế ta có:

\(x-y>0\)

\(\Leftrightarrow x>0+y\)

\(\Leftrightarrow x>y\) (đpcm)

b.

- Áp dụng quy tắc chuyển vế, ta có:

\(x>y\)

\(\Leftrightarrow x-y>0\) (đpcm)

santa
28 tháng 12 2020 lúc 14:52

p/s: theo mình mấy cái này chuyển vế là ra mà cần j cm đâu :v mà thoi làm như n cho dễ

a) Nếu x - y > 0 <=> x - y + y > 0 + y <=> x > y

b) Nếu x > y <=> x - y > y - y <=> x - y > 0

dream XD
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 1 2022 lúc 14:29

Đề bài sai

Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)

Khi đó  \(x< y\) nhưng \(z< y\)

Nguyễn Tân Vương
2 tháng 1 2022 lúc 14:30

\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)

\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)

                \(b\left(a+c\right)=ba+bc\left(3\right)\)

\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)

\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)

\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

\(\Rightarrow x< y< z\)

Thiên An
Xem chi tiết
alibaba nguyễn
20 tháng 5 2017 lúc 13:49

Điều kiện \(\hept{\begin{cases}x\ge0\\y\ge0\end{cases}}\)

\(1+\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}\)

\(\Leftrightarrow\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1\)  (\(\sqrt{x}+\sqrt{y}-1>0\))

\(\Leftrightarrow\sqrt{x}+\sqrt{y}-\sqrt{xy}+1=0\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) (\(\sqrt{xy}-1>0\))

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2=\left(\sqrt{xy}-1\right)^2\)

\(\Leftrightarrow4\sqrt{xy}=x+y-xy-1\)

Vì x, y nguyên nên \(\sqrt{xy}\) cũng phải nguyên

\(\Rightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) nguyên  (1)

Ta lại có: 

\(x-y=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)

\(\Rightarrow\sqrt{x}-\sqrt{y}\) nguyên (2)

Lấy (1) + (2) và  (1) - (2) ta có:

\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}=2\sqrt{x}\\\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\end{cases}}\)

\(\Rightarrow\sqrt{x},\sqrt{y}\) là số nguyên

Vậy x, y là bình phương đúng của 1 số nguyên.

Thiên An
20 tháng 5 2017 lúc 10:54

mình sửa lại cái đề là: x, y nguyên nha m.n

alibaba nguyễn
20 tháng 5 2017 lúc 13:54

Thật ra là có thể tìm được luôn là: \(\left(x,y\right)=\left(4,9;9,4\right)\)luôn đấy. 

CLB Yêu Toán ❤❤
Xem chi tiết
Kirito-Kun
6 tháng 9 2021 lúc 21:39

đề khó hiểu vậy