Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn Nguyễn
Xem chi tiết
minh :)))
9 tháng 1 2023 lúc 23:02

đã có ng lm rồi bn k đăng lại nhé

Tuấn Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2023 lúc 22:45

Δ=(-4)^2-4(m^2+3m)

=16-4m^2-12m

=-4(m^2+3m-4)

=-4(m+4)(m-1)

Để phươg trình có hai nghiệm thì Δ>=0

=>-4(m+4)(m-1)>=0

=>(m+4)(m-1)<=0

=>-4<=m<=1

x1^2+x2^2=6

=>(x1+x2)^2-2x1x2=6

=>4^2-2(m^2+3m)=6

=>16-2m^2-6m-6=0

=>-2m^2-6m+10=0

=>m^2+3m-5=0

=>\(m=\dfrac{-3\pm\sqrt{29}}{2}\)

Nguyễn Việt Lâm
9 tháng 1 2023 lúc 22:48

\(\Delta'=4-m^2-3m\ge0\Rightarrow-4\le m\le1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m^2+3m\end{matrix}\right.\)

\(x_1^2+x_2^2=6\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow4^2-2\left(m^2+3m\right)=6\)

\(\Leftrightarrow m^2+3m-5=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{-3+\sqrt{29}}{2}>1\left(loại\right)\\m=\dfrac{-3-\sqrt{29}}{2}< -4\left(loại\right)\end{matrix}\right.\)

Vậy ko tồn tại m thỏa mãn yêu cầu đề bài

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 6 2018 lúc 11:07

Đáp án A

28 Nhật Quý
Xem chi tiết
Nguyễn Tuấn Anh
6 tháng 3 2023 lúc 13:56

học tốt nhé !

28 Nhật Quý
Xem chi tiết
Ng Bảo Ngọc
6 tháng 3 2023 lúc 12:17

2 nghiệp pt phải:

 (2m - 1)2-4(m2 - 1)≥0

Vì x1 là nghiệm nên

x21−(2m−1)x1+m2−1=0

<=> x12−(2m−1)x1+m2−1=0

<=>x12−2mx1+m2=x1+1

<=> 9m2=0 <=>m=0

#YQ

Limited Edition
Xem chi tiết
Akai Haruma
17 tháng 3 2021 lúc 18:04

Lời giải:

Để PT có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m+1)^2-(m^2-1)>0\Leftrightarrow 2m+2>0\Leftrightarrow m>-1$

Áp dụng định lý Viet:

$x_1+x_2=2(m+1)$ và $x_1x_2=m^2-1$

Khi đó, để $x_1^2+x_2^2=x_1x_2+8$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=x_1x_2+8$

$\Leftrightarrow (x_1+x_2)^2=3x_1x_2+8$

$\Leftrightarrow 4(m+1)^2=3(m^2-1)+8$

$\Leftrightarrow m^2+8m-1=0$

$\Leftrightarrow m=-4\pm \sqrt{17}$. Vì $m>-1$ nên $m=-4+\sqrt{17}$

Khánh Vy
Xem chi tiết
YangSu
13 tháng 4 2022 lúc 19:41

Do pt có 2 nghiệm phân biệt \(x_1,x_2\) nên theo đ/l Vi-ét , ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=3m\\P=x_1x_2=\dfrac{c}{a}=3m-1\end{matrix}\right.\)

Ta có :

\(x_1^2+x_2^2=6\)

\(\Leftrightarrow S^2+2P-6=0\)

\(\Leftrightarrow\left(3m\right)^2+2\left(3m-1\right)-6=0\)

\(\Leftrightarrow9m^2+6m-2-6=0\)

\(\Leftrightarrow9m^2+6m-8=0\)

\(\Delta=b^2-4ac=6^2-4.9.\left(-8\right)=324>0\)

\(\Rightarrow\)Pt có 2 nghiệm \(m_1,m_2\)

\(\left\{{}\begin{matrix}m_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-6+18}{18}=\dfrac{2}{3}\\m_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-6-18}{18}=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(m=\dfrac{2}{3};m=-\dfrac{4}{3}\) thì thỏa mãn \(x_1^2+x_2^2=6\)

Khánh Vy
Xem chi tiết
Nguyễn Ngọc Huy Toàn
13 tháng 4 2022 lúc 21:03

\(\Delta=\left(-3m\right)^2-4\left(3m-1\right)\)

 \(=9m^2-12m+4=\left(3m-1\right)^2+3>0\)

=> pt luôn có 2 nghiệm phân biệt 

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=3m\\x_1.x_2=3m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\)

\(\Leftrightarrow\left(3m\right)^2-2\left(3m-1\right)=6\)

\(\Leftrightarrow9m^2-6m+2=6\)

\(\Leftrightarrow9m^2-6m-4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{3}\\x=\dfrac{1+\sqrt{5}}{3}\end{matrix}\right.\)

Hồ Thị Thúy Nhi
Xem chi tiết
Akai Haruma
26 tháng 5 2022 lúc 17:44

Lời giải:
Để pt có nghiệm thì $\Delta'=4-m\geq 0\Leftrightarrow m\leq 4$

Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:

$x_1+x_2=4$

$x_1x_2=m$

Khi đó:

$x_2^2-x_1^2=18$

$\Leftrightarrow (x_2-x_1)(x_2+x_1)=18$

$\Leftrightarrow (x_2-x_1).4=18$

$\Leftrightarrow x_2-x_1=4,5$

$\Rightarrow (x_2-x_1)^2=20,25$

$\Leftrightarrow (x_2+x_1)^2-4x_1x_2=20,25$

$\Leftrightarrow 4^2-4m=20,25$

$\Leftrightarrow m=\frac{-17}{16}$ (tm)

Vô Song Cửu Khuyết
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 3 2023 lúc 22:34

x1+x2=2m+2; x1x2=m^2+4

x1^2+2(m+1)x2<=2m^2+20

=>x1^2+x2(x1+x2)<=2m^2+20

=>x1^2+x2x1+x2^2<=2m^2+20

=>(x1+x2)^2-x1x2<=2m^2+20

=>(2m+2)^2-(m^2+4)<=2m^2+20

=>4m^2+8m+4-m^2-4-2m^2-20<=0

=>m^2-8m-20<=0

=>m<=-10 hoặc m>2

Lương Đại
31 tháng 3 2023 lúc 23:02

\(x^2-2\left(m+1\right)x+m^2+4=0\left(1\right)\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta'>0\) hay \(\Delta'=\left(m+1\right)^2-m^2-4=m^2+2m+1-m^2-4=2m-4>0\Leftrightarrow m>2\)

Theo hệ thức Viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+4\end{matrix}\right.\)

Vì \(x_1^2\) là nghiệm của phương trình (1) nên ta có : \(x_1^2-2\left(m+1\right)x+m^2+4=0\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)

Ta lại có : \(x_1^2+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-m^2-4\le2m^2+20\)

\(\Leftrightarrow4\left(m+1\right)^2-m^2\le2m^2+20\)

\(\Leftrightarrow4\left(m^2+2m+1\right)-m^2\le2m^2+20\)

\(\Leftrightarrow m^2+8m-16\le0\)

\(\Leftrightarrow-10\le m\le2\)

Kết hợp điều kiện....