Gía trị của m để phương trinh x2-4x+m2+3m=0 có 2 nghiệm
x1,x2 thỏa mãn x12+x2=6
Cho phương trình x2-4x+m2+3m=0 (m là tham số)
Tìm m để phương trình đã cho có hai nghiệm x1;x2 thỏa mãn x12+x2=6
Cho phương trình x2-4x+m2+3m=0 (m là tham số)
Tìm m để phương trình đã cho có hai nghiệm x1;x2 thỏa mãn x12+x22=6
Δ=(-4)^2-4(m^2+3m)
=16-4m^2-12m
=-4(m^2+3m-4)
=-4(m+4)(m-1)
Để phươg trình có hai nghiệm thì Δ>=0
=>-4(m+4)(m-1)>=0
=>(m+4)(m-1)<=0
=>-4<=m<=1
x1^2+x2^2=6
=>(x1+x2)^2-2x1x2=6
=>4^2-2(m^2+3m)=6
=>16-2m^2-6m-6=0
=>-2m^2-6m+10=0
=>m^2+3m-5=0
=>\(m=\dfrac{-3\pm\sqrt{29}}{2}\)
\(\Delta'=4-m^2-3m\ge0\Rightarrow-4\le m\le1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m^2+3m\end{matrix}\right.\)
\(x_1^2+x_2^2=6\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow4^2-2\left(m^2+3m\right)=6\)
\(\Leftrightarrow m^2+3m-5=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{-3+\sqrt{29}}{2}>1\left(loại\right)\\m=\dfrac{-3-\sqrt{29}}{2}< -4\left(loại\right)\end{matrix}\right.\)
Vậy ko tồn tại m thỏa mãn yêu cầu đề bài
Cho phương trình: x 2 – 2(m – 1)x + m 2 − 3m = 0. Tìm m để phương trình có 2 nghiệm phân biệt x 1 ; x 2 thỏa mãn x 1 2 + x 2 2 = 8
A. m = 2
B. m = −1
C. m = −2
D. m = 1
Tc pt: x2 -(2m+1)x + m2 -1=0
tìm các giá trị của m để phương trình có 2 nghiệm x1 x2 thỏa mãn: ( x12 - 2mx1 + m2) (x2+1)=1
Tc pt: x2 -(2m+1)x + m2 -1=0
tìm các giá trị của m để phương trình có 2 nghiệm x1 x2 thỏa mãn: ( x12 - 2mx1 + m2) (x2+1)=1
2 nghiệp pt phải:
(2m - 1)2-4(m2 - 1)≥0
Vì x1 là nghiệm nên
x21−(2m−1)x1+m2−1=0
<=> x12−(2m−1)x1+m2−1=0
<=>x12−2mx1+m2=x1+1
<=> 9m2=0 <=>m=0
#YQ
Cho phương trình ẩn x: x2 - 2(m+1)x + m2 - 1 = 0 . Tìm giá trị của m để phương tình có 2 nghiệm x1 x2 thỏa mãn x12 + x22 = x1.x2 + 8
Lời giải:
Để PT có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=(m+1)^2-(m^2-1)>0\Leftrightarrow 2m+2>0\Leftrightarrow m>-1$
Áp dụng định lý Viet:
$x_1+x_2=2(m+1)$ và $x_1x_2=m^2-1$
Khi đó, để $x_1^2+x_2^2=x_1x_2+8$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=x_1x_2+8$
$\Leftrightarrow (x_1+x_2)^2=3x_1x_2+8$
$\Leftrightarrow 4(m+1)^2=3(m^2-1)+8$
$\Leftrightarrow m^2+8m-1=0$
$\Leftrightarrow m=-4\pm \sqrt{17}$. Vì $m>-1$ nên $m=-4+\sqrt{17}$
Cho phương trình : x2 - 3mx + 3m - 1 = 0
Tìm m để phương trình có 2 nghiệm phân biệt x1, x2
Thỏa mãn: x12 + x2 2 = 6
Do pt có 2 nghiệm phân biệt \(x_1,x_2\) nên theo đ/l Vi-ét , ta có :
\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=3m\\P=x_1x_2=\dfrac{c}{a}=3m-1\end{matrix}\right.\)
Ta có :
\(x_1^2+x_2^2=6\)
\(\Leftrightarrow S^2+2P-6=0\)
\(\Leftrightarrow\left(3m\right)^2+2\left(3m-1\right)-6=0\)
\(\Leftrightarrow9m^2+6m-2-6=0\)
\(\Leftrightarrow9m^2+6m-8=0\)
\(\Delta=b^2-4ac=6^2-4.9.\left(-8\right)=324>0\)
\(\Rightarrow\)Pt có 2 nghiệm \(m_1,m_2\)
\(\left\{{}\begin{matrix}m_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-6+18}{18}=\dfrac{2}{3}\\m_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-6-18}{18}=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(m=\dfrac{2}{3};m=-\dfrac{4}{3}\) thì thỏa mãn \(x_1^2+x_2^2=6\)
Cho phương trình : x2 - 3mx + 3m - 1 = 0
Tìm m để phương trình có 2 nghiệm phân biệt x1, x2
Thỏa mãn: x12 + x2 2 = 6
\(\Delta=\left(-3m\right)^2-4\left(3m-1\right)\)
\(=9m^2-12m+4=\left(3m-1\right)^2+3>0\)
=> pt luôn có 2 nghiệm phân biệt
Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=3m\\x_1.x_2=3m-1\end{matrix}\right.\)
\(x_1^2+x_2^2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\)
\(\Leftrightarrow\left(3m\right)^2-2\left(3m-1\right)=6\)
\(\Leftrightarrow9m^2-6m+2=6\)
\(\Leftrightarrow9m^2-6m-4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{3}\\x=\dfrac{1+\sqrt{5}}{3}\end{matrix}\right.\)
Cho phương trình : x2-4x+m=0(m là tham số)
a) Tính các giá trị của m để phương trình có các nghiệm x1,x2 thỏa mãn x1< x2 và x22-x12=18
Lời giải:
Để pt có nghiệm thì $\Delta'=4-m\geq 0\Leftrightarrow m\leq 4$
Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:
$x_1+x_2=4$
$x_1x_2=m$
Khi đó:
$x_2^2-x_1^2=18$
$\Leftrightarrow (x_2-x_1)(x_2+x_1)=18$
$\Leftrightarrow (x_2-x_1).4=18$
$\Leftrightarrow x_2-x_1=4,5$
$\Rightarrow (x_2-x_1)^2=20,25$
$\Leftrightarrow (x_2+x_1)^2-4x_1x_2=20,25$
$\Leftrightarrow 4^2-4m=20,25$
$\Leftrightarrow m=\frac{-17}{16}$ (tm)
Cho phương trình x2- 2( m+1 )x+m2+4=0
Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x12 +2(m+1)x2 ≤ 2m2 + 20
x1+x2=2m+2; x1x2=m^2+4
x1^2+2(m+1)x2<=2m^2+20
=>x1^2+x2(x1+x2)<=2m^2+20
=>x1^2+x2x1+x2^2<=2m^2+20
=>(x1+x2)^2-x1x2<=2m^2+20
=>(2m+2)^2-(m^2+4)<=2m^2+20
=>4m^2+8m+4-m^2-4-2m^2-20<=0
=>m^2-8m-20<=0
=>m<=-10 hoặc m>2
\(x^2-2\left(m+1\right)x+m^2+4=0\left(1\right)\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta'>0\) hay \(\Delta'=\left(m+1\right)^2-m^2-4=m^2+2m+1-m^2-4=2m-4>0\Leftrightarrow m>2\)
Theo hệ thức Viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+4\end{matrix}\right.\)
Vì \(x_1^2\) là nghiệm của phương trình (1) nên ta có : \(x_1^2-2\left(m+1\right)x+m^2+4=0\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)
Ta lại có : \(x_1^2+2\left(m+1\right)x_2\le2m^2+20\)
\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2\le2m^2+20\)
\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-m^2-4\le2m^2+20\)
\(\Leftrightarrow4\left(m+1\right)^2-m^2\le2m^2+20\)
\(\Leftrightarrow4\left(m^2+2m+1\right)-m^2\le2m^2+20\)
\(\Leftrightarrow m^2+8m-16\le0\)
\(\Leftrightarrow-10\le m\le2\)
Kết hợp điều kiện....