Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
yeens
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
✰๖ۣۜŠɦαɗøω✰
27 tháng 3 2020 lúc 8:31

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

Khách vãng lai đã xóa
Phùng Gia Bảo
27 tháng 3 2020 lúc 9:14

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

Khách vãng lai đã xóa
Lê Nhật Khôi
27 tháng 3 2020 lúc 10:53

Bài 4:

Ta đặt: \(S=6^m+2^n+2\)

TH1: n chẵn thì:

\(S=6^m+2^n+2=6^m+2\left(2^{n-1}+1\right)\)

Mà \(2^{n-1}+1⋮3\Rightarrow2\left(2^{n-1}+1\right)⋮6\Rightarrow S⋮6\)

Đồng thời S là scp

Cho nên: \(S=6^m+2\left(2^{n-1}\right)=\left(6k\right)^2\)

\(\Leftrightarrow6^m+6\left(2^{n-2}-2^{n-3}+...+2-1\right)=36k^2\)

Đặt: \(A\left(n\right)=2^{n-2}-2^{n-3}+...+2-1=2^{n-3}+...+1\)là số lẻ

Tiếp tục tương đương: \(6^{m-1}+A\left(n\right)=6k^2\)

Vì A(n) lẻ và 6k^2 là chẵn nên: \(6^{m-1}\)lẻ\(\Rightarrow m=1\)

Thế vào ban đầu: \(S=8+2^n=36k^2\)

Vì n=2x(do n chẵn) nên tiếp tục tương đương: \(8+\left(2^x\right)^2=36k^2\)

\(\Leftrightarrow8=\left(6k-2^x\right)\left(6k+2^x\right)\)

\(\Leftrightarrow2=\left(3k-2^{x-1}\right)\left(3k+2^{x-1}\right)\)

Vì \(3k+2^{x-1}>3k-2^{x-1}>0\)(lớn hơn 0 vì 2>0 và \(3k+2^{x-1}>0\))

Nên: \(\hept{\begin{cases}3k+2^{x-1}=2\\3k-2^{x-1}=1\end{cases}}\Leftrightarrow6k=3\Rightarrow k\notin Z\)(loại)

TH2: n là số lẻ

\(S=6^m+2^n+2=\left(2k\right)^2\)(do S chia hết cho 2 và S là scp)

\(\Leftrightarrow3\cdot6^{m-1}+2^{n-1}+1=2k^2\)là số chẵn

\(\Rightarrow3\cdot6^{m-1}+2^{n-1}\)là số lẻ

Chia tiếp thành 2TH nhỏ: 

TH2/1: \(3\cdot6^{m-1}\)lẻ và \(2^{n-1}\)chẵn với n là số lẻ

Ta thu đc: m=1 và thế vào ban đầu

\(S=2^n+8=\left(2k\right)^2\)(n lớn hơn hoặc bằng 3)

\(\Leftrightarrow2^{n-2}+2=k^2\)

Vì \(k^2⋮2\Rightarrow k⋮2\Rightarrow k^2=\left(2t\right)^2\)

Tiếp tục tương đương: \(2^{n-2}+2=4t^2\)

\(\Leftrightarrow2^{n-3}+1=2t^2\)

\(\Leftrightarrow2^{n-3}\)là số lẻ nên n=3

Vậy ta nhận đc: \(\left(m;n\right)=\left(1;3\right)\)

TH2/2: \(3\cdot6^{m-1}\)là số chẵn và \(2^{n-1}\)là số lẻ

Suy ra: n=1

Thế vào trên: \(6^m+4=4k^2\)

\(\Leftrightarrow6^m=\left(2k-2\right)\left(2k+2\right)\)

\(\Leftrightarrow\hept{\begin{cases}2k-2=6^q\\2k+2=6^p\end{cases}}\Rightarrow p+q=m\)

Và \(6^p-6^q=4\)

\(\Leftrightarrow6^q\left(6^{p-q}-1\right)=4\Leftrightarrow6^q\le4\Rightarrow q=1\)(do là tích 2 stn)

\(\Rightarrow k\notin Z\)

Vậy \(\left(m;n\right)=\left(1;3\right)\)

P/S: mk không kiểm lại nên có thể sai

Khách vãng lai đã xóa
kanna kamui
Xem chi tiết
Yeutoanhoc
25 tháng 6 2021 lúc 16:01

`2(n-1)-5(n-2)>0`

`<=>2n-2-5n+10>0`

`<=>8-3n>0`

`<=>3n<8`

`<=>n<8/3`

Mà `n in NN`

`=>n in {0,1,2}`

๖ۣۜDũ๖ۣۜN๖ۣۜG
25 tháng 6 2021 lúc 16:02

\(2\left(n-1\right)-5\left(n-2\right)>0\)

<=> 2n -2 - 5n + 10 > 0

<=> -3n + 8 > 0

<=> -3n > - 8

<=> \(n< \dfrac{8}{3}\)

Mà n là số tự nhiên

<=> n \(\in\left\{0;1;2\right\}\)

_Jun(준)_
25 tháng 6 2021 lúc 16:03

\(2\left(n-1\right)-5\left(n-2\right)>0\)

\(\Leftrightarrow2n-2-5n+2>0\)

\(\Leftrightarrow2n-5n>0+2-2\)

\(\Leftrightarrow-3n>0\)

\(\Leftrightarrow\)\(n< 0\)

Vậy S={n|n<0}

Nguyễn Anh Khoa
Xem chi tiết
Lightning Farron
7 tháng 11 2016 lúc 17:00

vô ngiệm

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 2 2019 lúc 13:00

Đáp án là B

Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 3 2022 lúc 14:51

TH1: \(z=0\Rightarrow4x^2-y^2=19\Leftrightarrow\left(2x-y\right)\left(2x+y\right)=19\)

\(\Rightarrow\left(x;y\right)=\left(5;9\right)\)

TH2: \(z=1\Rightarrow4x^2-y^2=2040\Rightarrow\left(2x-y\right)\left(2x+y\right)=2040\)

(ko có nghiệm nguyên)

TH3: \(z\ge2\Rightarrow2022^z⋮4\)

Do \(4x^2;2022^2;18\) đều chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn \(\Rightarrow y=2k\)

\(\Rightarrow4x^2=4k^2+2022^z+18\)

\(\Rightarrow4x^2-4k^2-2022^z=18\)

Vế trái chia hết cho 4, vế phải ko chia hết cho 4 nên pt vô nghiệm

Vậy pt có bộ nghiệm tự nhiên duy nhất: \(\left(x;y;z\right)=\left(5;9;0\right)\)

Linh_Chi_chimte
Xem chi tiết

2,Giải: 

♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³ 

♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 ) 
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ 

=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 ) 
<=> 2p + 1 = 8k³ + 12k² + 6k + 1 
<=> p = k(4k² + 6k + 3) 

=> p chia hết cho k 
=> k là ước số của số nguyên tố p. 

Do p là số nguyên tố nên k = 1 hoặc k = p 

♫ Khi k = 1 
=> p = (4.1² + 6.1 + 3) = 13 (nhận) 

♫ Khi k = p 
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1 
Do p > 2 => (4p² + 6p + 3) > 2 > 1 
=> không có giá trị p nào thỏa. 

Đáp số : p = 13

Tô Mì
Xem chi tiết
Người Vô Danh
Xem chi tiết
Đức Nhật Huỳnh
1 tháng 11 2016 lúc 11:51

x^3-y^2=xy
=>(1) x(x^2-y)=y^2
x,y là các số tự nhiên => x^2-y là ước của y^2 => x^2 là ước của y^2 => x là ước của y => y=ax
=>(2) x^3=y(x+y)
=> x^3=ax(x+ax)=x^2.a.(a+1)
=> x=a(a+1)
Vậy x là tích 2 số tự nhiên liên tiếp; x,y có 2 chữ số.
a=1 => x=2 (loại)
a=2 => x=6 (loại)
a=3 => x=12 => y=36 (chọn)
a=4 => x=20 => y=80
(chọn)
a=5 => x=30 => y=150 (loại)
a>=5 thì y>100 => (loại)

Vậy (x,y)=(12,36) hoặc (x,y)=(20,80)

☠ℳɨɳ⇜¢áϕ☠
23 tháng 7 lúc 16:22

x^3-y^2=xy
=>(1) x(x^2-y)=y^2
x,y là các số tự nhiên => x^2-y là ước của y^2 => x^2 là ước của y^2 => x là ước của y => y=ax
=>(2) x^3=y(x+y)
=> x^3=ax(x+ax)=x^2.a.(a+1)
=> x=a(a+1)
Vậy x là tích 2 số tự nhiên liên tiếp; x,y có 2 chữ số.
a=1 => x=2 (loại)
a=2 => x=6 (loại)
a=3 => x=12 => y=36 (chọn)
a=4 => x=20 => y=80 
(chọn)
a=5 => x=30 => y=150 (loại)
a>=5 thì y>100 => (loại)

Vậy (x,y)=(12,36) hoặc (x,y)=(20,80)