phân tích đa thức thành nhân tử:81(y-4)^2-9x^3-36x-36
Phân tích đa thức thành nhân tử:
a) x 2 -3x + 2; b) 4 x 2 - 36x + 56;
c) 2 x 2 + 5x + 2; d)2 x 2 -9x + 7;
e) 4 x 2 - 4x - 9 y 2 + 12y - 3; g) x 4 - 2 x 3 -4 x 2 + 4x-3;
h) x 3 -x +3 x 2 y + 3x y 2 + y 3 -y.
a) (x - 1)(x - 2). b) 4(x - 2)(x - 7).
c) (x + 2)(2x +1). d) (x - l)(2x - 7).
e) (2x + 3y - 3)(2x - 3y +1). g) (x - 3)( x 3 + x 2 - x +1).
h) (x + y)(x + y-l)(x + y + l).
Phân tích đa thức thành nhân tử
a, 9x^4 +16y^6 - 24x^2y^3
b, 16x^2 - 24xy + 9y^2
c, 36x^2-(3x-2)^2
d, 27x^3 + 54x^2y+36xy^2 + 8y^3
e, y^9 - 9x^2y^6+27x^4y^3 - 27x^6
f,64x^3+1
e,27x^6 - 8x^4
làm ơn giải chi tiết giúp mik vs ạ
a) 9x4+16y6-24x2y3
=(3x2)2-2.3x2.4y3+(4y3)2
=(3x2-4y3)2
b) 16x2-24xy+9y2
=(4x)2-2.4x.3y+(3y)2
=(4x-3y)2
c) 36x2-(3x-2)2
=(36x-3x+2)(36x+3x-2)
=(33x+2)(39x-2)
d) 27x3+54x2y+36xy2+8y3
=(3x)3+3.(3x)2.2y+3.3x.(2y)2+(2y)3
=(3x+2y)3
e) y9-9x2y6+27x4y3-27x6
=(y3)3-3.(y3)2.3x2+3.y3.(3x2)2-(3x2)3
=(y3-3x2)3
f) 64x3+1
= (4x)3+13
=(4x+1)[(4x)2-4x.1+12]
=(4x+1)(16x2-4x+1)
e) 27x6-8x3 *sửa đề*
=(3x2)3-(2x)3
=(3x2-2x)[(3x)2+3x2.2x+(2x)2]
=(3x2-2x)(9x2+6x3+4x2)
~~~
Phân tích đa thức thành nhân tử
\(27x^3-\dfrac{1}{8}y^3\)
a. \(\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}x^2\right)\)
b. \(\dfrac{1}{8}\left(216x^3-y^3\right)=\dfrac{1}{8}\left(6x-y\right)\left(36x^2+6xy+y^2\right)\)
cách phân tích nào đúng a hay b giải thích vì sao
phân tích đa thức thành nhân tử
1/ \(6x^2y-9xy^2+3xy\)
2/ \(\left(4-x\right)^2-16\)
3/ \(x^3+9x^2-4x-36\)
1: \(6x^2y-9xy^2+3xy\)
\(=3xy\left(2x-3y+1\right)\)
2: \(\left(4-x\right)^2-16\)
\(=\left(4-x-4\right)\left(4-x+4\right)\)
\(=-x\cdot\left(8-x\right)\)
3: \(x^3+9x^2-4x-36\)
\(=x^2\left(x+9\right)-4\left(x+9\right)\)
\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)
1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)
2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)
3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)
phân tích đa thức thành nhân tử
a)x4 – 9x3 + 28x2 – 36x + 16
b)(12x – 1)(6x – 1)(4x – 1)(3x – 1) – 5
x4 - 9x3 + 28x2 - 36x + 16
Thử với x = 4 ta có :
44 - 9.43 + 28.42 - 36.4 + 16 = 0
Vậy 4 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x - 4
Thực hiện phép chia đa thức cho x - 4 ta được x3 - 5x2 + 8x - 4
Vậy ta phân tích được ( x - 4 )( x3 - 5x2 + 8x - 4 )
Tiếp tục : Thử x = 2 với x3 - 5x2 + 8x - 4
Ta có : 23 - 5.22 + 8.2 - 4 = 0
Vậy 2 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì x3 - 5x2 + 8x - 4 chia hết cho x - 2
Thực hiện phép chia x3 - 5x2 + 8x - 4 cho x - 2 ta được x2 - 3x + 2
Vậy ta phân tích được ( x - 4 )( x - 2 )( x2 - 3x + 2 )
x2 - 3x + 2 = x2 - x - 2x + 2
= x( x - 1 ) - 2( x - 1 )
= ( x - 2 )( x - 1 )
Vậy : x4 - 9x3 + 28x2 - 36x + 16 = ( x - 4 )( x - 2 )( x - 2 )( x - 1 ) = ( x - 4 )( x - 2 )2( x - 1 )
a. \(x^4-9x^3+28x^2-36x+16\)
\(=x^4-8x^3+20x^2-16x-x^3+8x^2-20x+16\)
\(=x\left(x^3-8x^2+20x-16\right)-\left(x^3-8x^2+20x-16\right)\)
\(=\left(x-1\right)\left(x^3-8x^2+20x-16\right)\)
\(=\left(x-1\right)\left(x^3-6x^2+8x-2x^2+12x-16\right)\)
\(=\left(x-1\right)\left[x\left(x^2-6x+8\right)-2\left(x^2-6x+8\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-6x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-2x-4x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left[x\left(x-2\right)-4\left(x-2\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)^2\left(x-4\right)\)
phân tích các đa thức thành nhân tử
a, x^3-4x^2-9x+36
b, x^2-y^2-2x-2y
A, \(x^3-4x^2-9x+36=x^2\left(x-4\right)-9\left(x-4\right)\)
\(=\left(x-4\right)\left(x^2-9\right)=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
\(b,x^2-y^2-2x-2y=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
12y - 9x^2 + 36 - 3x^2y (Phân tích đa thức thành nhân tử)
\(12y-9x^2+36-3x^2y\)
\(=\left(36-9x^2\right)-\left(3x^2y-12y\right)\)
\(=-9\left(x^2-4\right)-3y\left(x^2-4\right)\)
\(=\left(-3\right)\left(x-2\right)\left(x+2\right)\left(3+y\right)\)
\(12y-9x^2+36-3x^2y\)
\(=\left(12y-3x^2y\right)-\left(9x^2-36\right)\)
\(=3y\left(4-x^2\right)-9\left(x^2-4\right)\)
\(=3y\left(4-x^2\right)+9\left(4-x^2\right)\)
\(=\left(3y+9\right)\left(4-x^2\right)\)
\(=3\left(y+3\right)\left[\left(2^2\right)-x^2\right]\)
\(=3\left(y+3\right)\left(2+x\right)\left(2-x\right)\)
Phân tích đa thức thành nhân tử x^3(x^2-7)^2-36x
Lời giải:
\(x^3(x^2-7)^2-36x=x[x^2(x^2-7)^2-36]\\
=x[(x^3-7x)^2-6^2]=x(x^3-7x-6)(x^3-7x+6)\\
=x[x^2(x-3)+3x(x-3)+2(x-3)][x^2(x-2)+2x(x-2)-3(x-2)]\\
=x(x-3)(x^2+3x+2)(x-2)(x^2+2x-3)\\
=x(x-3)(x+1)(x+2)(x-2)(x-1)(x+3)\)
phân tích đa thức thành nhân tử bằng cách nhóm hạng tử
3) x2 (x+2y) - x - 2y
4) x3 - 4x2 - 9x + 36
5) x2y + xy2 + x2z + y2z + 2xyz
3) \(x^2\left(x+2y\right)-x-2y\)
\(=x^2\left(x+2y\right)-\left(x+2y\right)\)
\(=\left(x^2-1\right)\left(x+2y\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(x+2y\right)\)
4) \(x^3-4x^2-9x+36\)
\(=\left(x^3-4x^2\right)-\left(9x-36\right)\)
\(=x^2\cdot\left(x-4\right)-9\left(x-4\right)\)
\(=\left(x-4\right)\left(x^2-9\right)\)
\(=\left(x-4\right)\left(x+3\right)\left(x-3\right)\)
\(x^2\left(x+2y\right)-x-2y\\ =x^2\left(x+2y\right)-\left(x+2y\right)\\ =\left(x^2-1\right)\left(x+2y\right)\\ =\left(x-1\right)\left(x+1\right)\left(x+2y\right)\\ ---\\ x^3-4x^2-9x+36\\ =x^2\left(x-4\right)-9\left(x-4\right)\\ =\left(x^2-9\right)\left(x-4\right)\\ =\left(x-3\right)\left(x+3\right)\left(x-4\right)\)