Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Minh
Xem chi tiết
Hương Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2023 lúc 13:20

4:

x+3y=4m+4 và 2x+y=3m+3

=>2x+6y=8m+8 và 2x+y=3m+3

=>5y=5m+5 và x+3y=4m+4

=>y=m+1 và x=4m+4-3m-3=m+1

x+y=4

=>m+1+m+1=4

=>2m+2=4

=>2m=2

=>m=1

3:

x+2y=3m+2 và 2x+y=3m+2

=>2x+4y=6m+4 và 2x+y=3m+2

=>3y=3m+2 và x+2y=3m+2

=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3

Hoàng Việt Hà
Xem chi tiết
Nguyễn Trọng Chiến
7 tháng 3 2021 lúc 15:51

 ĐKXĐ: \(x,y\ne0\)\(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=4\\x^3+y^3+\dfrac{1}{x^3}+\dfrac{1}{y^3}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=4\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3-3\left(x+\dfrac{1}{x}\right)-3\left(y+\dfrac{1}{y}\right)=4\end{matrix}\right.\)

Đặt \(x+\dfrac{1}{x}=a;y+\dfrac{1}{y}=b\left(a,b\ne0\right)\)

\(\Rightarrow hpt\) trở thành:

\(\left\{{}\begin{matrix}a+b=4\left(1\right)\\a^3+b^3-3a-3b=4\left(2\right)\end{matrix}\right.\) 

Từ (1) \(\Rightarrow a=4-b\) Thay vào (2) ta được:

\(\left(4-b\right)^3+b^3-3\left(4-b\right)-3b=4\Leftrightarrow64-48b+12b^2-b^3+b^3-12+3b-3b-4=0\Leftrightarrow12b^2-48b+60=0\Leftrightarrow b^2-4b+5=0\Leftrightarrow b^2-4b+4+1=0\Leftrightarrow\left(b-2\right)^2+1=0\) Vô lí \(\Rightarrow\) ko có a,b \(\Rightarrow\) ko có x,y

Vậy hpt vô nghiệm

Phạm Ngọc Hải
Xem chi tiết
Yeutoanhoc
22 tháng 5 2021 lúc 7:12

$\begin{cases}3(x-1)+2(y-3)=-5\\(x+y-1)^2=(x+y)^2\\\end{cases}$

`<=>` $\begin{cases}3x-3+2y-6=-5\\(x+y-x-y+1)(x+y+x+y-1)=0\\\end{cases}$

`<=>` $\begin{cases}3x+2y=4\\1.(2x+2y-1)=0\\\end{cases}$

`<=>` $\begin{cases}3x+2y=4\\2x+2y=1\\\end{cases}$

`<=>` $\begin{cases}3x-2x=4-1=3\\2y=1-2x\\\end{cases}$

`<=>` $\begin{cases}x=3\\y=\dfrac{1-2x}{2}=-\dfrac52\\\end{cases}$

Vậy HPT có nghiệm `x,y=(3,-5/2)`

Chanmoon Park
Xem chi tiết
Nguyen Thi Phuong Anh
24 tháng 12 2017 lúc 14:12

ban dat 1/x+y=a va 1/y-1=b roi giai nhu binh thuong. tim dc a,b thay vao la ra

Lizy
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 lúc 21:44

a.

ĐKXĐ: \(x\ne\pm y\)

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x+y}=u\\\dfrac{1}{x-y}=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u+v=2\\2u+3v=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3u+3v=6\\2u+3v=5\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u=1\\v=2-u\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=1\\v=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y}=1\\\dfrac{1}{x-y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x-y=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x+7=x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-5x+6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Anh Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2022 lúc 13:53

a: \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}y=2\\\dfrac{3}{2}x-y=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\3x-2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-2y=8\\3x-2y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\2x-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=2x-4=6\end{matrix}\right.\)

Nguyễn Vân Hương
Xem chi tiết
Trí Tiên
15 tháng 8 2020 lúc 18:09

Ta có hệ : \(\hept{\begin{cases}x^2+y^2=\frac{1}{2}\\\left(x+y\right)^3+\left(x-y\right)^3=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}2x^2+2y^2=1\\2x^3+6xy^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}2y^2=1-2x^2\left(1\right)\\2x^3+6xy^2=1\left(2\right)\end{cases}}\)

Dễ thấy \(y=0\) không là nghiệm nên thế (1) và (2) ta có : \(2x^3+3.x.\left(1-2x^2\right)=1\)

\(\Leftrightarrow4x^3-3x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}\)

+) Với \(x=-1\) thì ta có : \(\hept{\begin{cases}\left(-1\right)^2+y^2=\frac{1}{2}\\\left(-1+y\right)^3+\left(-1-y\right)^3=1\end{cases}}\) ( Vô nghiệm )

+) Với \(x=\frac{1}{2}\) thì ta có : \(\left(\frac{1}{2}\right)^2+y^2=\frac{1}{2}\Leftrightarrow y=\pm\frac{1}{2}\). Thỏa mãn hệ phương trình.

Vậy hệ pt có 2 nghiệm \(\left(x,y\right)=\left\{\left(\frac{1}{2};-\frac{1}{2}\right),\left(\frac{1}{2},\frac{1}{2}\right)\right\}\)

Khách vãng lai đã xóa
katori mekirin
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2022 lúc 20:54

=>-15/x-1+3/y-1=30 và 1/x-1+3/y-1=18

=>-16/x-1=12 và -5/x-1+1/y-1=10

=>x-1=-4/3 và 1/y-1=10+5/x-1=10+5:(-4/3)=-15/4

=>x=-1/3 và y-1=-4/15

=>x=-1/3 và y=11/15

Phước Lộc
30 tháng 12 2022 lúc 20:59

\(\left\{{}\begin{matrix}-\dfrac{5}{x-1}+\dfrac{1}{y-1}=10\\\dfrac{1}{x-1}+\dfrac{3}{y-1}=18\end{matrix}\right.\)

Đặt: \(\dfrac{1}{x-1}=a;\dfrac{1}{y-1}=b\), ta được hệ mới:

\(\left\{{}\begin{matrix}-5a+b=10\\a+3b=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5a+b=10\\a=18-3b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-5\left(18-3b\right)+b=10\\a=18-3b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{25}{4}\\a=18-3\cdot\dfrac{25}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{25}{4}\\a=-\dfrac{3}{4}\end{matrix}\right.\)

Trả ẩn: \(\left\{{}\begin{matrix}\dfrac{1}{x-1}=-\dfrac{3}{4}\\\dfrac{1}{y-1}=\dfrac{25}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{29}{25}\end{matrix}\right.\)

Vậy hệ phương trình \(\left(x;y\right)=\left(-\dfrac{1}{3};\dfrac{29}{25}\right)\).

Anh Quynh
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 20:29

\(a,\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}-\dfrac{2}{y}=2\\\dfrac{2}{x}-\dfrac{3}{y}=5\end{matrix}\right.\left(x,y\ne0\right)\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{5}{y}=3\\\dfrac{2}{x}-\dfrac{3}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{5}{3}\\\dfrac{2}{x}+\dfrac{9}{5}=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=-\dfrac{5}{3}\end{matrix}\right.\)

\(b,\Leftrightarrow\left\{{}\begin{matrix}\dfrac{60}{x}-\dfrac{28}{y}=36\\\dfrac{60}{x}-\dfrac{135}{y}=525\end{matrix}\right.\left(x,y\ne0\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{9}{y}=35\\-\dfrac{163}{y}=489\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}-27=35\\y=-\dfrac{1}{3}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{31}\\y=-\dfrac{1}{3}\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 20:38

a: Ta có: \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{2}{x}-\dfrac{3}{y}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}-\dfrac{2}{y}=2\\\dfrac{2}{x}-\dfrac{3}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=-3\\\dfrac{1}{x}-\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-1}{3}\\\dfrac{1}{x}=1+\dfrac{1}{y}=1+\left(-3\right)=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\dfrac{-1}{2}\end{matrix}\right.\)