Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đạt Nguyễn Tiến
Xem chi tiết
Kiki :))
Xem chi tiết
迪丽热巴·迪力木拉提
17 tháng 5 2021 lúc 20:09

a) \(4sinx-1=1\Leftrightarrow4sinx=2\Leftrightarrow sinx=\dfrac{2}{4}=\dfrac{1}{2}\)

\(\Leftrightarrow x=30^o\)

b) \(2\sqrt{3}-3tanx=\sqrt{3}\Leftrightarrow3tanx=2\sqrt{3}-\sqrt{3}=\sqrt{3}\Leftrightarrow tanx=\dfrac{\sqrt{3}}{3}\)

\(\Leftrightarrow x=30^o\)

c) \(7sinx-3cos\left(90^o-x\right)=2,5\Leftrightarrow7sinx-3sinx=2,5\Leftrightarrow4sinx=2,5\Leftrightarrow sinx=\dfrac{5}{8}\Leftrightarrow x=30^o41'\)

d)\(\left(2sin-\sqrt{2}\right)\left(4cos-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2sin-\sqrt{2}=0\\4cos-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2sin=\sqrt{2}\\4cos=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin=\dfrac{\sqrt{2}}{2}\\cos=\dfrac{5}{4}\left(loai\right)\end{matrix}\right.\)\(\Rightarrow x=45^o\)

 

迪丽热巴·迪力木拉提
17 tháng 5 2021 lúc 20:17

Xin lỗi nãy đang làm thì bấm gửi, quên còn câu e, f nữa:"(

e) \(\dfrac{1}{cos^2x}-tanx=1\Leftrightarrow1+tan^2x-tanx-1=0\Leftrightarrow tan^2x-tanx=0\Leftrightarrow tanx\left(tanx-1\right)=0\Rightarrow tanx-1=0\Leftrightarrow tanx=1\Leftrightarrow x=45^o\)

f) \(cos^2x-3sin^2x=0,19\Leftrightarrow1-sin^2x-3sin^2x=0,19\Leftrightarrow1-4sin^2x=0,19\Leftrightarrow4sin^2x=0,81\Leftrightarrow sin^2x=\dfrac{81}{400}\Leftrightarrow sinx=\dfrac{9}{20}\Leftrightarrow x=26^o44'\)

Lê Đình Hiếu
Xem chi tiết
Hồng Phúc
12 tháng 9 2021 lúc 20:50

\(5cosx-2sin\dfrac{x}{2}+7=0\)

\(\Leftrightarrow5\left(1-2sin^2\dfrac{x}{2}\right)-2sin\dfrac{x}{2}+7=0\)

\(\Leftrightarrow5-10sin^2\dfrac{x}{2}-2sin\dfrac{x}{2}+7=0\)

\(\Leftrightarrow5sin^2\dfrac{x}{2}+sin\dfrac{x}{2}-6=0\)

\(\Leftrightarrow\left(sin\dfrac{x}{2}-1\right)\left(5sin\dfrac{x}{2}+6\right)=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}=1\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\pi+k2\pi\)

Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 7 2021 lúc 22:32

a.

Đặt \(y=\dfrac{2sinx+cosx}{sinx-cosx+3}\)

\(\Leftrightarrow y.sinx-y.cosx+3y=2sinx+cosx\)

\(\Leftrightarrow\left(2-y\right)sinx+\left(y+1\right)cosx=3y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(2-y\right)^2+\left(y+1\right)^2\ge9y^2\)

\(\Leftrightarrow7y^2+2y-5\le0\)

\(\Leftrightarrow-1\le y\le\dfrac{5}{7}\) (đpcm)

Nguyễn Việt Lâm
9 tháng 7 2021 lúc 22:37

b.

Hoàn toàn tương tự câu a:

Đặt \(y=\dfrac{2sinx+cosx+2}{2cosx-sinx+4}\)

\(\Leftrightarrow2y.cosx-y.sinx+4y=2sinx+cosx+2\)

\(\Leftrightarrow\left(y+2\right)sinx+\left(1-2y\right)cosx=4y-2\)

Theo đk có nghiệm pt lượng giác bậc nhất:

\(\left(y+2\right)^2+\left(1-2y\right)^2\ge\left(4y-2\right)^2\)

\(\Leftrightarrow11y^2-16y-1\le0\)

\(\Leftrightarrow\dfrac{8-5\sqrt{3}}{11}\le y\le\dfrac{8+5\sqrt{3}}{11}\)

Đề bài chắc sai, em kiểm tra lại số liệu đề câu b nhé

tran duc huy
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 8 2020 lúc 8:33

5.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)

\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)

\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)

\(\Leftrightarrow sin^22x=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 8:35

6.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)

\(\Leftrightarrow-3sin^22x+sin2x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 7:57

1.

\(\Rightarrow4cos^3x.cos3x+4sin^3x.sin3x=\sqrt{2}\)

\(\Leftrightarrow\left(3cosx+cos3x\right)cos3x+\left(3sinx-sin3x\right)sin3x=\sqrt{2}\)

\(\Leftrightarrow3\left(cos3x.cosx+sin3x.sinx\right)+cos^23x-sin^23x=\sqrt{2}\)

\(\Leftrightarrow3cos2x+cos6x=\sqrt{2}\)

\(\Leftrightarrow3cos2x+4cos^32x-3cos2x=\sqrt{2}\)

\(\Leftrightarrow4cos^32x=\sqrt{2}\)

\(\Leftrightarrow cos2x=\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{4}+k2\pi\\2x=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\end{matrix}\right.\)

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
18 tháng 5 2017 lúc 11:22

a) \(\left(sinx+cosx\right)^2=sin^2x+2sinxcosx+cos^2x\)\(=1+2sinxcosx\).
b) \(\left(sinx-cosx\right)^2=sin^2x-2sinxcosx+cos^2x\)\(=1-2sinxcosx\).
c) \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\)
\(=1-2sin^2xcos^2x\).

Lê Phương Thảo
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 10 2020 lúc 15:34

1.

\(\Leftrightarrow3x=k\pi\Leftrightarrow x=\frac{k\pi}{3}\)

2.

\(\Leftrightarrow cos5x=0\Leftrightarrow5x=\frac{\pi}{2}+k\pi\Leftrightarrow x=\frac{\pi}{10}+\frac{k\pi}{5}\)

4.

\(cos3x+cosx+cos2x=0\)

\(\Leftrightarrow2cos2x.cosx+cos2x=0\)

\(\Leftrightarrow cos2x\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
4 tháng 10 2020 lúc 15:35

3. ĐKXĐ: ...

\(\Leftrightarrow\frac{sin\left(x-15\right)}{cos\left(x-15\right)}=\frac{3sin\left(x+15\right)}{cos\left(x+15\right)}\)

\(\Leftrightarrow sin\left(x-15\right)cos\left(x+15\right)=3sin\left(x+15\right)cos\left(x-15\right)\)

\(\Leftrightarrow sin2x-sin30^0=3\left[sin2x+sin30^0\right]\)

\(\Leftrightarrow sin2x-\frac{1}{2}=3sin2x+\frac{3}{2}\)

\(\Leftrightarrow sin2x=-1\)

\(\Leftrightarrow2x=-\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)

Nguyễn Việt Lâm
4 tháng 10 2020 lúc 15:38

5.

\(sin6x+sin2x+sin4x=0\)

\(\Leftrightarrow2sin4x.cos2x+sin4x=0\)

\(\Leftrightarrow sin4x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)

6. ĐKXĐ; ...

\(\Leftrightarrow tanx+tan2x=1-tanx.tan2x\)

\(\Leftrightarrow\frac{tanx+tan2x}{1-tanx.tan2x}=1\)

\(\Leftrightarrow tan3x=1\)

\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)

Khách vãng lai đã xóa
dinhvanhungg
Xem chi tiết
Nguyễn Linh Chi
6 tháng 7 2019 lúc 16:54

a) Ta có: \(\sin^2a^o=\cos^2\left(90^o-a^o\right)\)

Biểu thức trên

\(=\left(\sin^21^o+\sin^o89\right)+\left(\sin^22^o+\sin^288^o\right)+...+\left(\sin^244^o+\sin^246^o\right)+\sin^245^o\)

\(=\left(\sin^21^o+\cos^21^o\right)+\left(\sin^22^o+\cos^22^o\right)+...+\left(\sin^244^o+\cos^246^o\right)+\sin^245^o\)

\(=1+1+..+1+\sin^245^o=44+\frac{1}{2}=\frac{89}{2}\)

b) 

Ta có: \(\sin^2x+\cos^2x=1\)

\(0^o< x< 90^o\)

=> \(0< \sin x;\cos x< 1\)

Ta có:  \(\frac{\sin^2x+\cos^2x}{\text{​​}\text{​​}\sin x.\cos x}=\frac{1}{\frac{12}{25}}=\frac{25}{12}\Leftrightarrow\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}=\frac{25}{12}\)

\(\Leftrightarrow\tan x+\frac{1}{\tan x}=\frac{25}{12}\Leftrightarrow\tan^2x-\frac{25}{12}\tan x+1=0\)

Đặt t =tan x => có phương trình bậc 2 ẩn t => Giải đen ta => ra đc t => ra đc tan t

\(\Leftrightarrow\orbr{\begin{cases}\tan x=\frac{3}{4}\\\tan x=\frac{4}{3}\end{cases}}\)

Sách Giáo Khoa
Xem chi tiết
Minh Hải
9 tháng 4 2017 lúc 20:47

a) Dễ thấy cosx = 0 không thỏa mãn phương trình đã cho nên chiaw phương trình cho cos2x ta được phương trình tương đương 2tan2x + tanx - 3 = 0.

Đặt t = tanx thì phương trình này trở thành

2t2 + t - 3 = 0 ⇔ t ∈ {1 ; }.

Vậy

b) Thay 2 = 2(sin2x + cos2x), phương trình đã cho trở thành

3sin2x - 4sinxcosx + 5cos2x = 2sin2x + 2cos2x

⇔ sin2x - 4sinxcosx + 3cos2x = 0

⇔ tan2x - 4tanx + 3 = 0

⇔ x = + kπ ; x = arctan3 + kπ, k ∈ Z.

c) Thay sin2x = 2sinxcosx ; = (sin2x + cos2x) vào phương trình đã cho và rút gọn ta được phương trình tương đương

sin2x + 2sinxcosx - cos2x = 0 ⇔ tan2x + 4tanx - 5 = 0 ⇔

⇔ x = + kπ ; x = arctan(-5) + kπ, k ∈ Z.

d) 2cos2x - 3√3sin2x - 4sin2x = -4

⇔ 2cos2x - 3√3sin2x + 4 - 4sin2x = 0

⇔ 6cos2x - 6√3sinxcosx = 0 ⇔ cosx(cosx - √3sinx) = 0