Ptth:x^2-2x +3m-5=0
Tìm m để pt có 2 ngo pb sao cho p=(x1^2-2)(x2^2-2) đạt gtnn
cho pt 2x^2-(m+1)x+m-1=0
Tìm m để pt có 2 ngh phân biệt x1, x2 thỏa x1-x2=x1.x2
Lời giải:
Để pt có 2 nghiệm phân biệt $x_1,x_2$ thì:
$\Delta=(m+1)^2+8(m-1)>0$
$\Leftrightarrow m^2+10m-7>0(*)$
Áp dụng định lý Viet:
$x_1+x_2=\frac{m+1}{2}$
$x_1x_2=\frac{m-1}{2}$
Khi đó:
$x_1-x_2=x_1x_2$
$\Rightarrow (x_1-x_2)^2=(x_1x_2)^2$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=(x_1x_2)^2$
$\Leftrightarrow (\frac{m+1}{2})^2-2(m-1)=(\frac{m-1}{2})^2$
$\Leftrightarrow m=2$ (thỏa mãn $(*)$)
Vậy......
cho pt x2-x+m-2=0
tìm m để phương trình có nghiệm x1 x2 sao cho gttđ của x1 + gttđ của x2 =2
cho pt x^2+ 2mx +1=0. tìm m để có 2 nghiệm pb sao cho A= x1²(x1²-2018) + x2²( x2²-2018) đạt gt nhỏ nhất .tìm gtnn đó.
Cho PT x2 - mx + m - 2 = 0. Tìm m để PT trên có 2 nghiệm x1, x2 sao cho biểu thức P = x1x2 - x12 - x22 đạt GTNN
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(P=x_1x_2-\left(x_1^2+x_2^2\right)=3x_1x_2-\left(x_1+x_2\right)^2\)
\(P=3\left(m-2\right)-m^2=-m^2+3m-6=-\left(m-\dfrac{3}{2}\right)^2-\dfrac{15}{4}\le-\dfrac{15}{4}\)
\(P_{max}=-\dfrac{15}{4}\) khi \(m=\dfrac{3}{2}\)
\(P_{min}\) ko tồn tại
Bạn ghi sai đề?
\(Δ=(-m)^2-4.1.(m-2)\\=m^2-4m+8\\=m^2-4m+4+4\\=(m-2)^2+4\)
\(\to\) Pt luôn có 2 nghiệm phân biệt
Theo Viét
\(\begin{cases}x_1+x_2=m\\x_1x_2=m-2\end{cases}\)
\(x_1x_2-x_1^2-x_2^2\\=3x_1x_2-(x_1^2+2x_1x_2+x_2^2)\\=3x_1x_2-(x_1+x_2)^2\\=3(m-2)-m^2\\=-m^2+3m-6\\=-\bigg(m^2-2.\dfrac{3}{2}.m+\dfrac{9}{4}+\dfrac{15}{4}\bigg)\\=-\bigg(m-\dfrac{3}{2}\bigg)^2-\dfrac{15}{4}\le -\dfrac{15}{4}\\\to \max P=-\dfrac{15}{4}\leftrightarrow m-\dfrac{3}{2}=0\\\leftrightarrow m=\dfrac{3}{2}\)
Vậy \(\max P=-\dfrac{15}{4}\)
Cho pt x^2 -2(m-2)x -2m =0
a. Cm pt luôn có 2 ngo pb vớj mọj m
b. Tìm giá trị của m để 2 ngo của pt thoả hệ thức x1-x2=x1^2
\(x^2-2mx+4x-2m=0\)
\(x\left(x+4\right)-2m\left(x+1\right)=0\)
\(x\left(x+4\right)=2m\left(x+1\right)\)
Với m=0 thì x=0 hoặc x=-4
Với m khác 0 thì \(x=\frac{2m\left(x+1\right)}{\left(x+4\right)}\)
cho pt x^2-5x+m-2=0
Tìm m để pt có nghiệm thỏa mãn
a,x1=2x2
b,x1^+x2^2=6
c,x1^2-x2^2=5
d,|x1-x2|=14
a: \(\Delta=\left(-5\right)^2-4\cdot1\cdot\left(m-2\right)=25-4m+8=-4m+33\)
Để phương trình có nghiệm thì -4m+33>=0
=>-4m>=-33
hay m<=33/4
Theo đề, ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{5}{3}\\x_1=\dfrac{10}{3}\end{matrix}\right.\)
Ta có: \(x_1x_2=m-2\)
=>m-2=50/9
hay m=68/9
b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow5^2-2\left(m-2\right)=6\)
=>25-2(m-2)=6
=>2(m-2)=19
=>m-2=19/2
hay m=23/2
d: \(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=14\)
\(\Leftrightarrow25-4\left(m-2\right)=196\)
=>4(m-2)=-171
=>m-1=-171/4
hay m=-163/4
cho pt: x^2-2(m-3)x+3m^2-8m+5=0.Tìm m để pt có hai nghiệm x1,x2 thỏa mãn x1^2+2x^2-3x1x2=x1-x2
Ta có: \(\Delta=\left\lbrack2\left(m-3\right)\right\rbrack^2-4\left(3m^2-8m+5\right)\)
\(=4\left(m^2-6m+9\right)-12m^2+32m-20\)
\(=4m^2-24m+36-12m^2+32m-20=-8m^2+8m+16\)
\(=-8\left(m^2-m-2\right)=-8\left(m-2\right)\left(m+1\right)\)
Để phương trình có hai nghiệm thì Δ>=0
=>-8(m-2)(m+1)>=0
=>(m-2)(m+1)<=0
=>-1<=m<=2
Theo Vi-et, ta có: \(\begin{cases}x_1+x_2=-\frac{b}{a}=2\left(m-3\right)\\ x_1x_2=\frac{c}{a}=3m^2-8m+5=\left(3m-5\right)\left(m-1\right)\end{cases}\)
\(x_1^2+2x_2^2-3x_1x_2=x_1-x_2\)
=>\(\left(x_1-x_2\right)\left(x_1-2x_2\right)-\left(x_1-x_2\right)=0\)
=>\(\left(x_1-x_2\right)\left(x_1-2x_2-1\right)=0\)
TH1: \(x_1-x_2=0\)
=>\(x_1=x_2\)
mà \(x_1+x_2=2\left(m-3\right)\)
nên \(x_1=x_2=\frac{2\left(m-3\right)}{2}=m-3\)
\(x_1x_2=3m^2-8m+5\)
=>\(3m^2-8m+5=\left(m-3\right)^2=m^2-6m+9\)
=>\(2m^2-2m-4=0\)
=>\(m^2-m-2=0\)
=>(m-2)(m+1)=0
=>\(\left[\begin{array}{l}m-2=0\\ m+1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}m=2\left(nhận\right)\\ m=-1\left(nhận\right)\end{array}\right.\)
TH2: \(x_1-2x_2-1=0\)
=>\(x_1-2x_2=1\)
mà \(x_1+x_2=2\left(m-3\right)=2m-6\)
nên \(x_1-2x_2-x_1-x_2=1-2m+6=-2m+7\)
=>\(-3x_2=-2m+7\)
=>\(x_2=\frac{2m-7}{3}\)
\(x_1+x_2=2m-6\)
=>\(x_1=2m-6-\frac{2m-7}{3}=\frac{3\left(2m-6\right)-2m+7}{3}=\frac{4m-11}{3}\)
\(x_1x_2=3m^2-8m+5\)
=>\(\frac{\left(2m-7\right)\left(4m-11\right)}{9}=3m^2-8m+5\)
=>\(9\left(3m^2-8m+5\right)=\left(2m-7\right)\left(4m-11\right)\)
=>\(27m^2-72m+45=8m^2-50m+77\)
=>\(19m^2-22m-32=0\)
=>(19m+16)(m-2)=0
=>\(\left[\begin{array}{l}19m+16=0\\ m-2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}m=-\frac{16}{19}\left(nhận\right)\\ m=2\left(nhận\right)\end{array}\right.\)
B1.Tìm các gt của m để pt:
x^2 - 2mx+m-2=0
Có 2no ple x1 x2 thỏa mãn M=\(\frac{2x1x2-\left(x1+x2\right)}{x1^2+x2^2-6x1x2}\)đạt GTNN
B2.Cho pt x^2-4x-m^2+3=0.Tìm m để pt có 2no x1,x2 thỏa mãn x1^2+3x1x2=10x2^2
B3.Tìm các gtrị của k để x^2 -(k-3)x-k+6=0.Có 1no dương duy nhất
B4.Cho pt : x^2+4x-3m+1=0.Tìm m để:
a)Pt có đúng 1no âm
b)Pt có 2no x1<x2<2
1) \(x^2-2mx+m-2=0\) (1)
pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\)
=> pt luôn có 2 nghiệm phân biệt x1, x2
Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)
\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)
xin 1slot sáng giải
bài 11:
Cho pt x2-5x+m+2=0
Tìm m để pt có 2 nghiệm pb thỏa mãn x12-x22=10
Bạn có thể tham khảo bài này. Hướng giải tương tự.
https://hoc24.vn/cau-hoi/cho-phuong-trinh-x2-4xm0m-la-tham-soa-tinh-cac-gia-tri-cua-m-de-phuong-trinh-co-cac-nghiem-x1x2-thoa-man-x1-x2-va-x22-x1218.6292592319064