Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2021 lúc 22:13

a, mình nghĩ đề là cm đẳng thức nhé 

\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)

Vậy ta có đpcm 

b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)

\(=-5y-9+xy=VP\)

Vậy ta có đpcm 

c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)

Vậy ta có đpcm 

Khách vãng lai đã xóa
Đặng Khánh Duy
Xem chi tiết
Kaijo
Xem chi tiết
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
16 tháng 3 2020 lúc 9:06

\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)

\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x+y\right)}\)

\(=\frac{30x\left(x-y\right)-5x\left(x+y\right)}{5\left(x+y\right).10\left(x+y\right)}\)

\(=\frac{5x\left(5x-7y\right)}{50\left(x+y\right)\left(x-y\right)}\)

\(=\frac{x\left(5x-7y\right)}{\left(x+y\right)\left(x-y\right)}\)

Khách vãng lai đã xóa
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
16 tháng 3 2020 lúc 9:13

chỗ cuối tớ sai 

\(=\frac{x\left(5x-7y\right)}{10\left(x+y\right)\left(x-y\right)}\)

đây nha , e xin lỗi

Khách vãng lai đã xóa
KAl(SO4)2·12H2O
16 tháng 3 2020 lúc 15:27

a) \(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}=\frac{3}{2x\left(x+1\right)}+\frac{2x-1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{x}\)

                                                          \(=\frac{3\left(x-1\right)+\left(2x-1\right)-2.2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)\left(x+1\right)}\)

                                                          \(=\frac{3x-2x+4x^2-2x-4x^2+4x-4x+4}{2x\left(x-1\right)\left(x+1\right)}\)

                                                          \(=\frac{x+1}{2x\left(x-1\right)\left(x+1\right)}\)

                                                          \(=\frac{1}{2x\left(x-1\right)}\)

b) \(\frac{3x}{5x+5y}-\frac{x}{10x-10y}=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x-y\right)}\)

                                                   \(=\frac{3x.10\left(x-y\right)-x.5\left(x+y\right)}{50\left(x-y\right)\left(x+y\right)}\)

                                                   \(=\frac{30x\left(x-y\right)+5x\left(x+y\right)}{50\left(x-y\right)\left(x+y\right)}\)

                                                   \(=\frac{5x\left[6\left(x-y\right)-\left(x+y\right)\right]}{50\left(x-y\right)\left(x+y\right)}\)

                                                   \(=\frac{5x\left(5x-7y\right)}{50\left(x-y\right)\left(x+y\right)}\)

                                                   \(=\frac{x\left(5x-7y\right)}{10\left(x-y\right)\left(x+y\right)}\)

c) \(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}=\frac{5x^2-y-x\left(3x-2y\right)}{xy}\)

                                                \(=\frac{5x^2-y-3x^2+2xy}{xy}\)

                                               \(=\frac{2x^2-y+2xy}{xy}\)

d) \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)

                                            \(=\frac{3x-x+6}{2x\left(x+3\right)}\)

                                            \(=\frac{2x+6}{2x\left(x+3\right)}\)

                                            \(=\frac{2\left(x+3\right)}{2x\left(x+3\right)}\)

                                            \(=\frac{2}{2x}=\frac{1}{x}\) 

Khách vãng lai đã xóa
yencba
Xem chi tiết
Capricorn
Xem chi tiết
Đinh Đức Hùng
1 tháng 3 2017 lúc 18:14

a ) \(\frac{x}{6}+\frac{x}{4}=\frac{5}{7}\)

\(\Leftrightarrow x\left(\frac{1}{6}+\frac{1}{4}\right)=\frac{5}{7}\)

\(\Leftrightarrow\frac{5}{12}x=\frac{5}{7}\)

\(\Rightarrow x=\frac{5}{7}:\frac{5}{12}\)

\(\Rightarrow x=\frac{12}{7}\)

b ) Nếu \(xy=5\) thì :

\(M=x^2y-xy^2-xy.x+xy.y-12\)

\(=x^2y-xy^2-x^2y+xy^2-12\)

\(=\left(xy^2-x^2y\right)+\left(-xy^2+xy^2\right)-12\)

\(=-12\)

bach nhac lam
Xem chi tiết
tthnew
8 tháng 12 2019 lúc 19:07

e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)

PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)

Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)

Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath

Khách vãng lai đã xóa
bach nhac lam
8 tháng 12 2019 lúc 17:11
Khách vãng lai đã xóa
thu dinh
Xem chi tiết
Vũ Minh Tuấn
26 tháng 7 2019 lúc 17:20

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

Nguyễn Văn Vũ
Xem chi tiết
Mai Thành Đạt
Xem chi tiết
Trần Nguyễn Khánh Linh
13 tháng 1 2018 lúc 21:07

cm bđt phụ \(5x^2+6xy+5y^2\ge4\left(x+y\right)^2\)nhé

Kiệt Nguyễn
12 tháng 7 2020 lúc 10:15

Ta có: \(\sqrt{5x^2+6xy+5y^2}=\sqrt{4\left(x+y\right)^2+\left(x-y\right)^2}\ge\sqrt{4\left(x+y\right)^2}=2\left(x+y\right)\)

\(\Rightarrow\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}\ge\frac{2\left(x+y\right)}{x+y+2z}\)(1)

Tương tự, ta có: \(\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}\ge\frac{2\left(y+z\right)}{y+z+2x}\)(2); \(\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\ge\frac{2\left(z+x\right)}{z+x+2y}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)

Đặt \(x+y=a;y+z=b;z+x=c\)thì \(\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\)\(=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Nhưng ta có BĐT Nesbitt quen thuộc sau: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

Thật vậy: 

(Bài này mình đã làm nhiều rồi nha nên ngại đánh lại, đây là bất đẳng thức có rất nhiều cách chứng minh nhưng mình nghĩ dồn biến là cách hay và đẹp nhất nha! Có thể tham khảo nhiều cách khác trên mạng, vô thống kê hỏi đáp của mình xem ảnh)

Như vậy: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)\(\ge2.\frac{3}{2}=3\)

Đẳng thức xảy ra khi x = y = z

Khách vãng lai đã xóa