cho điểm A ở ngoài (O) vẽ 2 tiếp tuyến AB và AC (B,c là tiếp điểm); di động trên cung nhỏ BC tiếp tuyến ở M cắt AB,AC ở P và Q cm chu vi tam giác APQ ko đổi
Cho (O;K). Từ A ở ngoài đường tròn vẽ 2 tiếp tuyến AB, AC (B, C là các tiếp điểm). Vẽ cát tuyến (d) qua A cắt (O) tại M và N (M nằm giữa A và N). Gọi H là trugn điểm MN, OH cắt AC tại K.
a. CM tứ giác ABOC nội tiếp đường tròn. Từ đó suy ra 5 điểm A, B, O, H, C cùng thuộc 1 đtr.
b. CM \(AB^2=AM.AN\) (1)
KC. KA = KH. KO (2)
c. đường thẳng AO cắt đường tròn (O) tại điểm E. CM E cách đều AB, AC và BC.
d. đường thẳng qua O cắt AB, AC lần lượt tại F và T. XĐ vị trí A trên (d) để diện tích AFT min.
(Bày giúp em ý 2 câu b, câu c, câu d em cảm ơn ạ)
(Thầy NVL rảnh giải giúp em - nhớ chi tiết chút em đỡ làm phiền thầy)
Em kiểm tra lại đề câu d, điểm A đã cố định nên đề ko thể là xác định vị trí A được, chỉ có xác định vị trí d qua O sao cho diện tích tam giác kia min thôi
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp đường tròn đường kính OA(1)
ΔOMN cân tại O
mà OH là trung tuyến
nên OH vuông góc MN
=>OH vuông góc HA
=>H nằm trên đường tròn đường kính OA(2)
Từ (1), (2) suy ra O,H,B,A,C cùng nằm trên đường tròn đường kính AO
b: Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB/AN=AM/AB
=>AB^2=AN*AM
Xét ΔKCO vuông tại C và ΔKHA vuông tại H có
góc K chung
=>ΔKCO đồng dạng với ΔKHA
=>KC/KH=KO/KA
=>KC*KA=KO*KH
c: góc ABE+góc OBE=90 độ
góc CBE+góc OEB=90 độ
mà góc OBE=góc OEB
nên góc ABE=góc CBE
=>BE là phân giác của góc ABC
mà AE là phan giác góc BAC
nên E cách đều AB,BC,AC
d.
Qua O kẻ đường thẳng song song AC cắt AB tại G, kẻ AH vuông góc TF
Do O, A, B, C cố định nên G cố định \(\Rightarrow S_{OAG}\) cố định
Áp dụng Talet: \(\dfrac{AG}{AF}=\dfrac{TO}{TF}\) \(\Rightarrow\dfrac{\dfrac{1}{2}OB.AG}{\dfrac{1}{2}OB.AF}=\dfrac{\dfrac{1}{2}AH.TO}{\dfrac{1}{2}AH.TF}\)
\(\Rightarrow\dfrac{S_{OAG}}{S_{OAF}}=\dfrac{S_{OAT}}{S_{AFT}}\Rightarrow S_{OAG}=\dfrac{S_{OAF}.S_{OAT}}{S_{AFT}}\le\dfrac{\left(S_{OAF}+S_{OAT}\right)^2}{4S_{AFT}}=\dfrac{S_{AFT}^2}{4S_{AFT}}=\dfrac{S_{AFT}}{4}\)
\(\Rightarrow S_{AFT}\ge4S_{OAG}\)
Dấu "=" xảy ra khi và chỉ khi \(S_{OAF}=S_{OAT}\Rightarrow AF=AT\)
\(\Rightarrow AO\) là trung trực FT hay \(d\perp AO\)
Cho đường tròn tâm O bán kính 2 cm từ điểm A bên ngoài đường tròn , vẽ 2 tiếp điểm AB và AC vuông góc với nhau (B;C là tiếp điểm ) . lấy điểm M thuộc cung BC . vẽ tiếp tuyến của đường tròn M tại 2 tiếp tuyến lần lượt ở D và E
a) tứ giác ABOC là hình gì
b) tình chu vi tam giác ADE
c) tính góc DOE
Từ 1 điểm A ở bên ngoài đường tròn (O), vẽ 2 tiếp tuyến AB,AC (C và B là 2 tiếp điểm) và cát tuyến ADE đến đường tròn (O) ( D nằm giữa A và E) a.cmr: AB^2 =AD.AE b. Gọi H là giao điểm của OA và BC. Cm: tứ giác DEOH nội tiếp được đường tròn c. Cm: BH là tia phân giác của góc EHD. d. Qua D vẽ đường thẳng song song với EB, cắt BC tại P và AB tại Q. Cm: DP=DQ
cho đường tròn (O;R) từ điểm A ở bên ngoài đường tròn sao cho OA = 2R. Kẻ 2 tiếp tuyến AB,AC với đường tròn ( B,C tiếp điểm)
a) vẽ đường kính COD. C/Minh BD//AO
b) gọi E là 1 điểm thuộc cung nhỏ BC. kẻ tiếp tuyến với đường tròn tại E cắt AB và AC theo thức tự M,N. TÍNH GÓC MON VÀ chu vi tam giác AMN
Từ điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB và AC với đường tròn (B; C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Kẻ đường kính BK của (O). AK cắt (O) tại ETừ điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB và AC với đường tròn (B;C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Kẻ đường kính BK của (O). AK cắt (O) tại E.a.Chứng minh : tứ giác OBAC nội tiếp và AB^2=AE.AKb.Chứng minh : tứ giác OHEK nội tiếp và CE vuông góc HEc.Tia BK và tia AC cắt nhau tại F.Kẻ CI vu
a) Xét tứ giác OBAC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Từ điểm A ở bên ngoài đường tròn tâm O kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Lấy điểm C thuộc đường tròn (O) sao cho AC=AB (C khác B). Vẽ đk BE
a. AC vuông góc với OC. Từ đó suy ra AC là tiếp tuyến của (O) b. OA song song với CE
c) Gọi H là hình chiếu vuông góc của điểm C trên BE và M là giao điểm của AE và CH. Chứng minh M là trung điểm vủa CH
a: Xét ΔOBA và ΔOCA có
OB=OC
BA=CA
OA chung
Do đó: ΔOBA=ΔOCA
=>góc OCA=90 độ
=>AC là tiếp tuyến của (O)
b: Xét (O) có
ΔBCE nội tiếp
BE là đường kính
Do đó; ΔBCE vuông tại C
=>BC vuông góc với CE
AB=AC
OB=OC
=>AO là trung trực của BC
=>AO vuông góc với BC
=>AO//CE
Từ A nằm ngoài (O) vẽ 2 tiếp tuyến AB, AC( B,C là tiếp điểm) và cát tuyến ADE đến (O). I trung điểm DE
a) CM ABIC, OICA, BDIC nội tiếp
Ta có góc OIA= góc OBA= góc OCA=90 độ
=> đỉnh I,B,C cùng nhìn cạnh AO dưới 1 góc khổng đổi
=> O,I,B,A,C cùng thuộc 1 đường tròn
=>ABIC và OICA nội tiếp
Cậu ơi cái BDIC nội tiếp là k chứng minh đc nha cậu tớ thử nhiều cách rồi
Từ điểm A ở ngoài đường tròn (O), vẽ hai tiếp tuyến AB, AC với (O) (B, C là hai tiếp điểm). Gọi H là giao điểm của AO và BC.
a) Chứng minh: AO là đường trung trực của BC.
b) Gọi D là điểm trên cung nhỏ BC của (O). Tiếp tuyến tại D của (O) cắt AB, AC lần lượt tại M, N. Chứng minh rằng : Chu vi của ΔAMN = AB + AC
c) Đường thẳng AD cắt (O) tại điểm thứ hai là E. Chứng minh:góc AHD=góc AEO
Cho (O;R). Từ 1 điểm A ở ngoài đường tròn tâm O, vẽ các tiếp tuyến AB, AC với (O) có B, C là tiếp điểm. Gọi H là giao điểm của AO và dây BC. Kẻ đường kính BD. a, CM 4 điểm A, B, O, C cùng thuộc 1 đường tròn. b, Tiếp tuyến của (O) tại D cắt BC tại E. CM tam giác ACD đồng dạng vs tam giác OCE. Giúp mk phần b nhaa *-*
a: Xét tứ giácc ABOC có
góc OBA+góc OCA=180 độ
nen ABOC là tứ giác nội tiếp
b: Xét ΔCAO vuông tại C và ΔCDE vuông tại C có
góc CAO=góc CDE
Do đó: ΔCAO đồng dạng vơi ΔCDE
=>CA/CD=CO/CE
=>CA/CO=CD/CE
Xét ΔCAD và ΔCOE có
CA/CO=CD/CE
góc ACD=góc OCE
Do đo: ΔCAD đồng dạng với ΔCOE