Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Tuệ Lâm
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2023 lúc 14:02

Em kiểm tra lại đề câu d, điểm A đã cố định nên đề ko thể là xác định vị trí A được, chỉ có xác định vị trí d qua O sao cho diện tích tam giác kia min thôi

Nguyễn Lê Phước Thịnh
21 tháng 4 2023 lúc 14:02

a: góc OBA+góc OCA=180 độ

=>OBAC nội tiếp đường tròn đường kính OA(1)

ΔOMN cân tại O

mà OH là trung tuyến

nên OH vuông góc MN

=>OH vuông góc HA

=>H nằm trên đường tròn đường kính OA(2)

Từ (1), (2) suy ra O,H,B,A,C cùng nằm trên đường tròn đường kính AO

b: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM

Xét ΔKCO vuông tại C và ΔKHA vuông tại H có

góc K chung

=>ΔKCO đồng dạng với ΔKHA

=>KC/KH=KO/KA

=>KC*KA=KO*KH

c: góc ABE+góc OBE=90 độ

góc CBE+góc OEB=90 độ

mà góc OBE=góc OEB

nên góc ABE=góc CBE

=>BE là phân giác của góc ABC

mà AE là phan giác góc BAC

nên E cách đều AB,BC,AC

Nguyễn Việt Lâm
21 tháng 4 2023 lúc 14:29

d.

Qua O kẻ đường thẳng song song AC cắt AB tại G, kẻ AH vuông góc TF

Do O, A, B, C cố định nên G cố định \(\Rightarrow S_{OAG}\) cố định

Áp dụng Talet: \(\dfrac{AG}{AF}=\dfrac{TO}{TF}\)  \(\Rightarrow\dfrac{\dfrac{1}{2}OB.AG}{\dfrac{1}{2}OB.AF}=\dfrac{\dfrac{1}{2}AH.TO}{\dfrac{1}{2}AH.TF}\)

\(\Rightarrow\dfrac{S_{OAG}}{S_{OAF}}=\dfrac{S_{OAT}}{S_{AFT}}\Rightarrow S_{OAG}=\dfrac{S_{OAF}.S_{OAT}}{S_{AFT}}\le\dfrac{\left(S_{OAF}+S_{OAT}\right)^2}{4S_{AFT}}=\dfrac{S_{AFT}^2}{4S_{AFT}}=\dfrac{S_{AFT}}{4}\)

\(\Rightarrow S_{AFT}\ge4S_{OAG}\)

Dấu "=" xảy ra khi và chỉ khi \(S_{OAF}=S_{OAT}\Rightarrow AF=AT\)

\(\Rightarrow AO\) là trung trực FT hay \(d\perp AO\)

Bùi Hà Anh
Xem chi tiết
Bùi Hà Anh
11 tháng 12 2020 lúc 21:59

help meee plssss

Kudo Shinichi
Xem chi tiết
Hà Ngân
Xem chi tiết
Trần Huỳnh Trọng Tín
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2021 lúc 22:33

a) Xét tứ giác OBAC có

\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 1 2023 lúc 14:11

a: Xét ΔOBA và ΔOCA có

OB=OC

BA=CA

OA chung

Do đó: ΔOBA=ΔOCA

=>góc OCA=90 độ

=>AC là tiếp tuyến của (O)

b: Xét (O) có

ΔBCE nội tiếp

BE là đường kính

Do đó; ΔBCE vuông tại C

=>BC vuông góc với CE

AB=AC

OB=OC

=>AO là trung trực của BC

=>AO vuông góc với BC

=>AO//CE

đào quỳnh anh
Xem chi tiết
Hoàng Anh Thắng
14 tháng 3 2022 lúc 22:26

Ta có góc OIA= góc OBA= góc OCA=90 độ

=> đỉnh I,B,C cùng nhìn cạnh AO dưới 1 góc khổng đổi

=> O,I,B,A,C cùng thuộc 1 đường tròn

=>ABIC và OICA nội tiếp

 

Hoàng Anh Thắng
14 tháng 3 2022 lúc 22:31

Cậu ơi cái BDIC nội tiếp là k chứng minh đc nha cậu tớ thử nhiều cách rồi

Heyhible
Xem chi tiết
Quách Thị Diệp Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2023 lúc 22:37

a: Xét tứ giácc ABOC có

góc OBA+góc OCA=180 độ

nen ABOC là tứ giác nội tiếp

b: Xét ΔCAO vuông tại C và ΔCDE vuông tại C có

góc CAO=góc CDE

Do đó: ΔCAO đồng dạng vơi ΔCDE

=>CA/CD=CO/CE

=>CA/CO=CD/CE

Xét ΔCAD và ΔCOE có

CA/CO=CD/CE

góc ACD=góc OCE
Do đo: ΔCAD đồng dạng với ΔCOE