Ta có góc OIA= góc OBA= góc OCA=90 độ
=> đỉnh I,B,C cùng nhìn cạnh AO dưới 1 góc khổng đổi
=> O,I,B,A,C cùng thuộc 1 đường tròn
=>ABIC và OICA nội tiếp
Cậu ơi cái BDIC nội tiếp là k chứng minh đc nha cậu tớ thử nhiều cách rồi
Ta có góc OIA= góc OBA= góc OCA=90 độ
=> đỉnh I,B,C cùng nhìn cạnh AO dưới 1 góc khổng đổi
=> O,I,B,A,C cùng thuộc 1 đường tròn
=>ABIC và OICA nội tiếp
Cậu ơi cái BDIC nội tiếp là k chứng minh đc nha cậu tớ thử nhiều cách rồi
Từ điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC (B và C là 2 tiếp điểm). Vẽ cát tuyến ADE đến (O) (tia AD nằm giữa 2 tia AB và AO). Gọi I là trung điểm của DE.
a) Chứng minh tứ giác OBAC nội tiếp được và OI vuông góc với DE. b) Chứng minh AB = AD, AE.
c) Kẻ dường thẳng qua D vuông góc với OC tại H và cắt BC tại K. Chứng minh tứ giác BDKI nội tiếp được.
Từ điểm A ở ngoài đường tròn (O;R) với (Oa>2R) vẽ hai tiếp tuyến AB;AC đến (O)(B;C là tiếp điểm) và cắt tuyến ADE đến (O) (D nằm giữa A và E; tia AE nằm giữa hai tia AO và AB) OA cắt BC tại H;I là trung điểm DE
a/Chứng minh tứ giác AIOC nội tiếp và OA vuông góc BC
b/Chứng minh AB2 = AD.AE và góc EDO= góc EHO
c/Qua D vẽ đường thẳng song song BE cắt AB;BC tại M và N.Chứng minh MD=ME
Từ điểm A ở ngoài đường tròn (O;R) với (Oa>2R) vẽ hai tiếp tuyến AB;AC đến (O)(B;C là tiếp điểm) và cắt tuyến ADE đến (O) (D nằm giữa A và E; tia AE nằm giữa hai tia AO và AB) OA cắt BC tại H;I là trung điểm DE
a/Chứng minh tứ giác AIOC nội tiếp và OA vuông góc BC
b/Chứng minh AB2 = AD.AE và góc EDO= góc EHO
c/Qua D vẽ đường thẳng song song BE cắt AB;BC tại M và N.Chứng minh MD=ME
từ một điểm A nằm ngoài (O,R) vẽ hai tiép tuyến AbB và AC. a) cm ABOC nội tiếp b) vẽ cát tuýen ADE, cm AD.AE=AB^2 c) gọi I là trung điểm DE, cm A,B,O,I,C nằm trên một đường tròn
Cho điểm A nằm ngoài đường tròn (O;R). Vẽ các tiếp tuyến AB, AC với đường tròn (O) tại B và C.
a) CM: tứ giác ABOC nội tiếp được đường tròn
b) Vẽ cát tuyến ADE với đường tròn (O), cát tuyến ADE không qua tâm O; D nằm giữa A và E ). CM: AB^2=AD.AE=OA^2-R^2
c) Gọi H là giao điểm của BC và OA. Cm: tứ giác HDEO nội tiếp
Cho điểm A nằm ngoài (O), Từ A kẻ 2 tiếp tuyến AB, AC đến (O). OA cắt BC tại H, cắt (O) tại M và N
a/ CM :OA vuông góc BC, tứ giác ABOC nội tiếp đường tròn tâm I. Xác định I
b/ Kẻ cát tuyến ADE( D nằm giữa A và E). F là trung điểm DE. CM: F thuộc (I) và AM.AN=AD.AE=AB2
c/ MH.NA=MA.NH
d/ Tứ giác DHOE nội tiếp
Giúp mình với mình cần gấp ạ:
Từ điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB,AC với đường tròn (O), (B,C là 2 tiếp điểm)
a) Chứng minh tứ giác ABOC nội tiếp đường tròn
b) vẽ cát tuyến ADE của(O) sao cho cát tuyến ADE nằm giữa 2 tia AO, AB; D,E thuộc đường tròn (O) và D nằm giữa A,E. CM AB2 = AD.AE
c) Gọi F là điểm đối xứng CỦa D qua OA, H là giao điểm của OA và BC. CM: ba điểm E,F,H thẳng hàng
Từ một điểm A nằm ngoài ( O;R) vẽ hai tiếp tuyến AB và AC
a) chứng minh ABOC nội tiếp
b) vẽ cát tuyến ADE, chứng minh: AD.AE=AB.AB
c) Gọi I là trung điểm DE, chứng minh : A;O;I;C nằm trên 1 đường tròn
d) chứng minh IA là phân giác của góc BIC
Từ 1 điểm A nắm ngoài đường tròn (o) kẻ 2 tiếp tuyến AB AC đền đg tròn (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O ( D nằm giữa A và E), gọi I là trung điểm của DE
Bạn chỉ mình cách vẽ với nha mình bí ở cái cát tuyến rồi