Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sherry
Xem chi tiết
Mai Thanh Hải
4 tháng 9 2017 lúc 18:45

Có : \(a^2+1=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

Tương tự : \(b^2+1=\left(a+b\right)\left(b+c\right)\)và    \(c^2+1=\left(a+c\right)\left(b+c\right)\)

Suy ra : \(S=\left(a+b\right)\left(a+c\right).\left(a+b\right)\left(b+c\right).\left(a+c\right)\left(b+c\right)\)

\(\Leftrightarrow S=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\)là số chính phương \(\forall\)a ,b ,c nguyên !

vũ tiền châu
4 tháng 9 2017 lúc 18:52

với ab+bc+ca=1, ta có 

\(a^2+1=a^2+ab+bc+ca=\left(a^2+ab\right)+\left(bc+ca\right)\)\(=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)

tương tự tra có \(b^2+1=\left(a+b\right)\left(b+c\right)\)

                          \(c^2+1=\left(a+c\right)\left(b+c\right)\)

=> S=\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) 

mà a,b, c là các số nguyên => \(\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) là số chính phương 

=> S là số chính phương (ĐPCM)

Tran Le Khanh Linh
5 tháng 8 2020 lúc 0:05

ta có \(\hept{\begin{cases}a^2+1=a^2+ab+bc+ca=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+c\right)\\b^2+1=b^2+ab+bc+ca=b\left(a+b\right)+a\left(b+c\right)=\left(b+c\right)\left(b+a\right)\\c^2+1=c^2+ab+bc+ca=c\left(b+c\right)+a\left(b+c\right)=\left(c+a\right)\left(b+c\right)\end{cases}}\)

\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+b\right)\left(c+a\right)\left(b+c\right)\)\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

=> đpcm

Khách vãng lai đã xóa
Big City Boy
Xem chi tiết
phan thị minh anh
Xem chi tiết
Nguyễn Tùng
Xem chi tiết
alibaba nguyễn
15 tháng 1 2019 lúc 9:22

Xem nó là phương trình ẩn a rồi dùng \(\Delta\)là ra

tth_new
24 tháng 2 2019 lúc 18:23

Câu hỏi của Cuồng Song Joong Ki - Toán lớp 8  (em không chắc đâu nha)

tth_new
24 tháng 2 2019 lúc 18:29

Chết,hình như sai r=((

tick đê Trương Bảo Châu
Xem chi tiết
Lê Thế Minh
Xem chi tiết
pham trung thanh
11 tháng 6 2018 lúc 21:10

Ta có: 

\(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)

Tương tự suy ra biểu thức đã cho bằng \(\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) và là số chính phương

dia fic
Xem chi tiết
thuychi_065
Xem chi tiết
Minh Hiếu
17 tháng 9 2023 lúc 11:09

Ta có: \(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)

Tương tự: \(\left\{{}\begin{matrix}b^2+1=\left(a+b\right)\left(b+c\right)\\c^2+1=\left(c+a\right)\left(b+c\right)\end{matrix}\right.\)

=> \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Mặt khác: \(a+b+c-abc=a\left(1-bc\right)+b+c\)

                \(=a\left(ab+ca\right)+b+c\)     (Vì ab+bc+ca=1)

               \(=\left(a^2+1\right)\left(b+c\right)\)

               \(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)    (Vì \(a^2+1=\left(a+b\right)\left(c+a\right)\))

\(T=1\)

Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Nguyễn Việt Lâm
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)