Cho 2 số nguyên a, b thỏa mãn:
\(a^2+b^2+1=2\left(ab+a+b\right)\)
Cho các số nguyên a, b, c thỏa mãn ab+ac+bc=1. Chứng minh \(S=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)là số chính phương
Có : \(a^2+1=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự : \(b^2+1=\left(a+b\right)\left(b+c\right)\)và \(c^2+1=\left(a+c\right)\left(b+c\right)\)
Suy ra : \(S=\left(a+b\right)\left(a+c\right).\left(a+b\right)\left(b+c\right).\left(a+c\right)\left(b+c\right)\)
\(\Leftrightarrow S=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\)là số chính phương \(\forall\)a ,b ,c nguyên !
với ab+bc+ca=1, ta có
\(a^2+1=a^2+ab+bc+ca=\left(a^2+ab\right)+\left(bc+ca\right)\)\(=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)
tương tự tra có \(b^2+1=\left(a+b\right)\left(b+c\right)\)
\(c^2+1=\left(a+c\right)\left(b+c\right)\)
=> S=\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
mà a,b, c là các số nguyên => \(\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) là số chính phương
=> S là số chính phương (ĐPCM)
ta có \(\hept{\begin{cases}a^2+1=a^2+ab+bc+ca=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+c\right)\\b^2+1=b^2+ab+bc+ca=b\left(a+b\right)+a\left(b+c\right)=\left(b+c\right)\left(b+a\right)\\c^2+1=c^2+ab+bc+ca=c\left(b+c\right)+a\left(b+c\right)=\left(c+a\right)\left(b+c\right)\end{cases}}\)
\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+b\right)\left(c+a\right)\left(b+c\right)\)\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
=> đpcm
Cho a, b, là số hữu tỉ thỏa mãn: \(\left(a^2+b^2-2\right).\left(a+b\right)^2+\left(1-ab\right)^2=-4ab\). CM: \(\sqrt{1+ab}\) là số hữu tỉ
Cho 2 số nguyên a,b thỏa mãn \(a^2+b^2+1=2\left(ab+a+b\right)\) . CM : a và b là 2 số chính phương liên tiếp
Cho 2 số nguyên a,b thỏa mãn \(a^2+b^2+1=2\left(ab+a+b\right)\)
CMR" a,b, là 2 scp liên tiếp
Xem nó là phương trình ẩn a rồi dùng \(\Delta\)là ra
Câu hỏi của Cuồng Song Joong Ki - Toán lớp 8 (em không chắc đâu nha)
Cho hai số nguyên dương a,b thỏa mãn \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)=\sqrt{2022}}\). Tính \(A=a\sqrt{b^2+1+b+\sqrt{a^2+1}}\)
cho a,b,c là 3 số nguyên thỏa mãn:\(ab+bc+ca=1\)
CM:\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)là 1 số chính phương
Ta có:
\(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
Tương tự suy ra biểu thức đã cho bằng \(\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) và là số chính phương
cho a, b, c là các số nguyên dương thỏa mãn \(ab+bc+ca+2\left(a+b+c\right)=8045\) và \(abc-a-b-c=-2\). tìm a+b+c
Cho a; b; c là các số thỏa mãn: ab + bc + ca = 1
Tính giá trị biểu thức: T = \(\dfrac{\left(a+b+c-abc\right)^2}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
Ta có: \(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)
Tương tự: \(\left\{{}\begin{matrix}b^2+1=\left(a+b\right)\left(b+c\right)\\c^2+1=\left(c+a\right)\left(b+c\right)\end{matrix}\right.\)
=> \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Mặt khác: \(a+b+c-abc=a\left(1-bc\right)+b+c\)
\(=a\left(ab+ca\right)+b+c\) (Vì ab+bc+ca=1)
\(=\left(a^2+1\right)\left(b+c\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (Vì \(a^2+1=\left(a+b\right)\left(c+a\right)\))
\(T=1\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)