Giải phương trình :
\(\sqrt{2^{x+1}}.\sqrt[3]{4^{2x-1}}.8^{3-x}=2\sqrt{2}.0,125\)
Giải phương trình :
a) \(\sqrt{2x^2-\sqrt{2}x+\dfrac{1}{4}}=\sqrt{2}x\)
b)\(\sqrt{4x+8}+\dfrac{1}{3}\sqrt{9x+18}=3\sqrt{\dfrac{x+2}{4}}+\sqrt{2}\)
b: Ta có: \(\sqrt{4x+8}+\dfrac{1}{3}\sqrt{9x+18}=3\sqrt{\dfrac{x+2}{4}}+\sqrt{2}\)
\(\Leftrightarrow2\sqrt{x+2}+\dfrac{1}{3}\cdot3\sqrt{x+2}-\dfrac{3}{2}\sqrt{x+2}=\sqrt{2}\)
\(\Leftrightarrow\sqrt{x+2}\cdot\dfrac{3}{2}=\sqrt{2}\)
\(\Leftrightarrow\sqrt{x+2}=\dfrac{2\sqrt{2}}{3}\)
\(\Leftrightarrow x+2=\dfrac{8}{9}\)
hay \(x=-\dfrac{10}{9}\)
giải phương trình :
a,\(\sqrt{2x^2+13x+5}+\sqrt{2x^2-3x+5}=8\sqrt{x}\)
b, \(\sqrt{x^2-\dfrac{4}{3}}+2\sqrt{x^2-1}=x\)
a.
ĐKXĐ: \(x\ge0\)
\(\sqrt{2x^2+13x+5}-5\sqrt{x}+\sqrt{2x^2-3x+5}-3\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2-12x+5}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{2x^2-12x+5}{\sqrt{2x^2-3x+5}+3\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-12x+5\right)\left(\dfrac{1}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-3x+5}+3\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-12x+5=0\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x^2\ge\dfrac{4}{3}\)
\(\sqrt{x^2-\dfrac{4}{3}}+\sqrt{4x^2-4}-x=0\)
\(\Leftrightarrow\sqrt{\dfrac{3x^2-4}{3}}+\dfrac{3x^2-4}{\sqrt{4x^2-4}+x}=0\)
\(\Leftrightarrow\sqrt{3x^2-4}\left(\dfrac{1}{\sqrt{3}}+\dfrac{\sqrt{3x^2-4}}{\sqrt{4x^2-4}+x}\right)=0\)
\(\Leftrightarrow3x^2-4=0\)
\(\Leftrightarrow...\)
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
Giải các phương trình sau :
1/\(\sqrt{x+2+4\sqrt{x-2}}=5\)
2/\(\sqrt{x+3+4\sqrt{x-1}}=2\)
3/\(\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\)
4/\(\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\)
\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)
\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)
\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)
Giải các phương trình sau:
1) \(\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{12x-8}{\sqrt{9x^2+16}}.\)
2) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}.\)
Giải phương trình:
\(\sqrt{2x^2+6x-8}+\sqrt{2x^2+4x-6}-3\sqrt{x+4}=3\sqrt{x+3}+1\)
cách khác đơn giản hơn nhiều
Đk:\(x\ge1\)
\(pt\Leftrightarrow\sqrt{2\left(x-1\right)\left(x+4\right)}+\sqrt{2\left(x-1\right)\left(x+3\right)}-3\sqrt{x+4}-3\sqrt{x+3}-1=0\)
\(\Leftrightarrow\sqrt{2\left(x-1\right)\left(x+4\right)}-3\sqrt{x+4}+\sqrt{2\left(x-1\right)\left(x+3\right)}-3\sqrt{x+3}=1\)
\(\Leftrightarrow\sqrt{x+4}\left(\sqrt{2\left(x-1\right)}-3\right)+\sqrt{x+3}\left(\sqrt{2\left(x-1\right)}-3\right)=1\)
\(\Leftrightarrow\left(\sqrt{x+4}+\sqrt{x+3}\right)\left(\sqrt{2\left(x-1\right)}-3\right)=1\)
Xét Ư(1)={1;-1}={....}
Dễ nhé, tự làm nốt
Đk: \(x\ge1\)
\(pt\Leftrightarrow\sqrt{2x^2+6x-8}+\sqrt{2x^2+4x-6}-3\sqrt{x+4}-3\sqrt{x+3}-1=0\)
\(\Leftrightarrow\sqrt{2x^2+6x-8}-\frac{10}{3}\sqrt{x+3}+\frac{1}{3}\sqrt{x+3}-1\sqrt{2x^2+4x-6}-3\sqrt{x+4}=0\)
\(\Leftrightarrow\frac{2x^2+6x-8-\frac{100}{9}\left(x+3\right)}{\sqrt{2x^2+6x-8}+\frac{10}{3}\sqrt{x+3}}+\frac{x-6}{3\left(\sqrt{x+3}+3\right)}+\frac{2x^2+4x-6-9\left(x+4\right)}{\sqrt{2x^2+4x-6}+3\sqrt{x+4}}=0\)
Để đỡ rối ta đặt mấy cái mẫu \(\hept{\begin{cases}N=\sqrt{2x^2+6x-8}+\frac{10}{3}\sqrt{x+3}>0\\H=\sqrt{x+3}+3>0\\T=\sqrt{2x^2+4x-6}+3\sqrt{x+4}>0\end{cases}}\)
\(\Leftrightarrow\frac{18x^2-46x-372}{9N}+\frac{x-6}{3H}+\frac{2x^2-5x-42}{T}=0\)
\(\Leftrightarrow\left(x-6\right)\left(\frac{18x+62}{9N}+\frac{1}{3H}+\frac{2x+7}{T}\right)=0\)
Dễ thấy: \(\forall x\ge1\) thì \(\frac{18x+62}{9N}+\frac{1}{3H}+\frac{2x+7}{T}>0\)
\(\Rightarrow x-6=0\Rightarrow x=6\) (thỏa mãn)
GIẢI PHƯƠNG TRÌNH
\(\sqrt{2x^2+6x-8}+\sqrt{2x^2+4x-6}-3\sqrt{x+4}=3\sqrt{x+3}+1\)
Giải phương trình:
\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\)
Tham khảo:
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\left(đk:x\ge0\right)\)
\(\Leftrightarrow x+3+4x+4\sqrt{x\left(x+3\right)}=4+x\left(x+3\right)+4\sqrt{x\left(x+3\right)}\)
\(\Leftrightarrow5x+3=4+x^2+3x\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\left(tm\right)\)
giải phương trình :
a, \(\left(x+1\right)\sqrt{x+8}=x^2+x+4\)
b, \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
c, \(\left(3x+1\right)\sqrt{x^2+3}=3x^2+2x+3\)
c.
\(\Leftrightarrow x^2+3-\left(3x+1\right)\sqrt{x^2+3}+2x^2+2x=0\)
Đặt \(\sqrt{x^2+3}=t>0\)
\(\Rightarrow t^2-\left(3x+1\right)t+2x^2+2x=0\)
\(\Delta=\left(3x+1\right)^2-4\left(2x^2+2x\right)=\left(x-1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x+1-x+1}{2}=x+1\\t=\dfrac{3x+1+x-1}{2}=2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3=x^2+2x+1\left(x\ge-1\right)\\x^2+3=4x^2\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
a.
Đề bài ko chính xác, pt này ko giải được
b.
ĐKXĐ: \(x\ge-\dfrac{7}{2}\)
\(2x+7-\left(2x+7\right)\sqrt{2x+7}+x^2+7x=0\)
Đặt \(\sqrt{2x+7}=t\ge0\)
\(\Rightarrow t^2-\left(2x+7\right)t+x^2+7x=0\)
\(\Delta=\left(2x+7\right)^2-4\left(x^2+7x\right)=49\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2x+7-7}{2}=x\\t=\dfrac{2x+7+7}{2}=x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+7}=x\left(x\ge0\right)\\\sqrt{2x+7}=x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-7=0\left(x\ge0\right)\\x^2+12x+42=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=1+2\sqrt{2}\)