Chứng minh rằng: \(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{32}>2.\)
Chứng minh rằng: \(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{32}>2\).
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{32}>\frac{1}{15}+\frac{1}{15}+\frac{1}{15}+...+\frac{1}{15}\)
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{32}>\frac{1\cdot30}{15}\)
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{32}>2\)
Chứng minh rằng
\(A=\frac{3}{5}< \frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}< \frac{4}{5}\)
Cho S = \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\) . Chứng minh rằng \(\frac{3}{5}< S< \frac{4}{5}\).
Chứng minh rằng \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
Ta có 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64
= ( 1/2 - 1/4 ) + ( 1/8 - 1/16 ) + ( 1/32 - 1/64)
= 1/4 + 1/16 + 1/64
= 16 + 4 + 1 /64
= 21/64 < 21/63 = 1/3
Vậy 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3 ( đpcm ) Chúc bn hok tốt . k mik nha
Chứng minh rằng:
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
Ta có :
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
\(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}< \frac{1}{3}\)
\(\frac{16}{64}+\frac{4}{64}+\frac{1}{64}< \frac{1}{3}\)
\(\frac{16+4+1}{64}< \frac{1}{3}\)
\(\frac{21}{64}< \frac{1}{3}\)
=> 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Chứng minh rằng:
a,\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b,\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
giúp minh với
Bài 1: Tìm x biết: \(\left(-2\right)\cdot\left(x+1\right)-3\cdot\left(1-x\right)=4\)
Bài 2: Chứng minh rằng: \(\frac{3}{5}< \frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}< \frac{4}{5}\)
Bài 1 :
\(\left(-2\right)\left(x+1\right)-3\left(1-x\right)=4\)
\(\Leftrightarrow-2x-2-3+3x=4\)
\(\Leftrightarrow x=4+2+3=9\)
Bài 2 :
Cho \(S=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\)
\(\Leftrightarrow S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)
\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\Rightarrow S< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)\)
\(+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)
\(\Leftrightarrow S< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)(1)
Lại có :
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)
\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\Leftrightarrow S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)
\(+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)
\(\Leftrightarrow S>\frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\)(2)
Từ (1) và (2) , ta có :
\(\frac{3}{5}< S< \frac{4}{5}hay\frac{3}{5}< \frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}< \frac{4}{5}\)
CHỨNG MINH RẰNG :
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
Ta có: \(\frac{1}{2}-\frac{1}{4}=\frac{2}{4}-\frac{1}{4}=\frac{2-1}{4}=\frac{1}{4}\)
\(\frac{1}{8}-\frac{1}{16}=\frac{2}{16}-\frac{1}{16}=\frac{2-1}{16}=\frac{1}{16}\)
\(\frac{1}{32}-\frac{1}{64}=\frac{2}{64}-\frac{1}{64}=\frac{2-1}{64}=\frac{1}{64}\)
=> \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
=\(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}\)
=\(\frac{16}{64}+\frac{4}{64}+\frac{1}{64}=\frac{21}{64}\)
Ta có: \(\frac{21}{64}< \frac{21}{63}=\frac{1}{3}\)
=> \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
Đặt \(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
\(A+2A=1-\frac{1}{64}\)
\(3A=1-\frac{1}{64}< 1\)
=>A<1/3
=>đpcm
1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 = 21/64
Nên 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Chúc bạn học giỏi
Chứng minh rằng :
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)\(\frac{1}{3}\)