1. So sánh A và B:
\(A=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\); \(B=\frac{5}{7^3}+\frac{6}{7^2}+\frac{5}{7^4}+\frac{4}{7}+5\)
tim T biet T = \(\frac{2}{5}\)S mà S = \(\frac{\left(9\frac{3}{8}:5,2+3,4.2\frac{7}{34}\right):1\frac{9}{16}}{0,31.8\frac{2}{5}-5,61:27\frac{1}{2}}\)
bài 1 : tính
a)\(\frac{-5}{13}-\left(\frac{3}{5}+\frac{3}{13}-\frac{4}{10}\right)\) b) \(\left(\frac{3}{9}-\frac{9}{18}\right)+\frac{3}{6}-\left(\frac{1}{3}-\frac{1}{2}\right)-\frac{5}{15}\) c) \(\frac{9}{18}+\frac{16}{32}-\frac{12}{46}-\frac{9}{17}\) d) \(\left(\frac{14}{18}+\frac{-16}{27}\right)-\left(\frac{2}{3}-\frac{5}{15}\right)\)
Cho A = \(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...........+\frac{n}{5^{n+1}}+........+\frac{11}{5^{12}}\)với n \(\in\)N . Chứng minh rằng A < \(\frac{1}{6}\)
Cho A = + +\(\frac{3}{5^4}\) + .....+ \(\frac{n}{5^{n+1}}\) +......+\(\frac{11}{5^{12}}\) với n thuộc N.
Chứng minh rằng A \(<\) \(\frac{1}{16}\)
Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)
So sánh S với \(\frac{1}{2}\)
cho s=\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
chung minh rang 1<s<2 tu do suy ra s ko phai la so tu nhien
So Sánh \(\frac{-4}{5}\)và -1 ; \(\frac{3}{4}\)và \(\frac{4}{5}\)
Thực hiện phép tính ( hợp lí nếu có ) :
a) ( \(\frac{1}{4}\) + \(\frac{-5}{13}\) ) + ( \(\frac{2}{11}\) + \(\frac{-8}{13}\) + \(\frac{3}{4}\) )
b) ( \(\frac{21}{31}\) + \(\frac{-16}{7}\) ) + ( \(\frac{44}{53}\) + \(\frac{10}{31}\) ) + \(\frac{9}{53}\)
c) \(\frac{\frac{9}{45}-\frac{4}{13}-\frac{1}{3}}{\frac{3}{13}-\frac{1}{15}+\frac{2}{3}}\)