Chứng minh:
A = 301293 - 1 chia hết cho 13
a)Chứng minh:A=2 mũ 1+2 mũ 2+2 mũ 3+2 mũ4+...+2 mũ 2010 chia hết cho 3 và 7
b)Chứng minh:B=3 mũ 1+3 mũ 2+3 mũ 3+3 mũ 4+...+3 mũ 2010 chia hết cho 4 và 13
a) A = 21 + 22 + 23 + 24 +...+ 22010
=> A = (2 + 22) + 22.(2 + 22) + ... + 22008.(2 + 22)
=> A = 6 + 22.6 + ... + 22008.6
=> A = 6 . (1 + 22 + ... + 22008) \(⋮\)3 => A \(⋮\)3.
A = 21 + 22 + 23 +...+ 22010
=> A = (21 + 22 + 23) + ... + (22008 + 22009 + 22010)
=> A = 14 + ... + 22007.(2 + 22 + 23)
=> A = 14 + ... + 22007.14
=> A = 14.(1+...+22007) \(⋮\)7 => A \(⋮\)7
b) Để B chia hết cho 4 thì bạn gộp 2 số lại ( được 1 thừa số là 12 ) => B chia hết cho 4.
Để B chia hết cho 7 thì bạn gộp 3 số lại ( được 1 thừa số là 39 ) => B chia hết cho 13.
Sorry, bài B không làm chặt chẽ được vì mình bận đi học rồi.
Chúng bạn học tốt.
cho mình hỏi bạn Phúc lí do vì sao lại là 2 mũ 2008
cho n là số tự nhiên,chứng minh:
a,5^2n+1 +2^n+4 +2^n+1 chia hết cho 23
b,2^2n+2 +24n +14 chia hết cho 18
a) Ta có:
(5^2n+1) + (2^n+4) + (2^n+1) = (25^n).5 - 5.(2^n) + (2^n).( 5 + 2^4 +2) = 5.( 25^n - 2^n ) + 23.2^n chia hết cho 23.
cho n là số tự nhiên,chứng minh:
a,5^2n+1 +2^n+4 +2^n+1 chia hết cho 23
b,2^2n+2 +24n +14 chia hết cho 18
cho n là số tự nhiên,chứng minh:
a,5^2n+1 +2^n+4 +2^n+1 chia hết cho 23
b,2^2n+2 +24n +14 chia hết cho 18
Lời giải:
a)
\(5^{2n+1}+2^{n+4}+2^{n+1}=5.25^n+16.2^n+2.2^n\)
\(\equiv 5.2^n+16.2^n+2.2^n\pmod {23}\)
\(\equiv 23.2^n\equiv 0\pmod {23}\)
Ta có đpcm.
b)
\(2^{2n+2}+24n+14\) hiển nhiên chia hết cho $2(1)$
Mặt khác:
Nếu $n=3k+1$:
$2^{2n+2}+24n+14=2^{6k+4}+72k+38$
$=16.2^{6k}+72k+38\equiv 16+72k+38=54+72k\equiv 0\pmod 9$
Nếu $n=3k$:
$2^{2n+2}+24n+14=2^{6k+2}+72k+14=4.2^{6k}+72k+14$
$\equiv 4+72k+14=18+72k\equiv 0\pmod 9$
Nếu $n=3k+2$:
$2^{2n+2}+24n+14=2^{6k+6}+72k+62\equiv 1+72k+62$
$\equiv 63+72k\equiv 0\pmod 9$
Vậy tóm lại $2^{2n+2}+24n+14$ chia hết cho $9$ (2)
Từ $(1);(2)\Rightarrow 2^{2n+2}+24n+14\vdots 18$ (đpcm)
cho n là số tự nhiên,chứng minh:
a,5^2n+1 +2^n+4 +2^n+1 chia hết cho 23
b,2^2n+2 +24n +14 chia hết cho 18
Chứng minh:A= \(11^{10}-1\) chia hết cho 100
chứng minh:a(a^2-1) chia hết cho 6(a thuộc z)
\(a.\left(a^2-1\right)=a.\left(a-1\right).\left(a+1\right)\)
Vậy đây là tích của 3 số nguyên liên tiếp
Nếu a chẵn thì a chia hết cho 2 => a.(a-1).(a+1) chia hết cho 2
Nếu a lẻ thì a chia 2 dư 1=> a+1 chia hết cho 2=> a.(a-1).(a+1) chia hết cho 2
Vậy a.(a-1).(a+1) chia hết cho 2 với mọi a (1)
Nếu a chia hết cho 3=> a.(a-1).(a+1) chia hết cho 3
Nếu a chia 3 dư 1=> a-1 chia hết cho 3=> a.(a-1).(a+1) chia hết cho 3
Nếu a chia 3 dư 2=> a+1 chia hết cho 3=> a.(a-1).(a+1) chia hết cho 3
Vậy a.(a-1).(a+1) chia hết cho 3 với mọi a (2)
Từ (1) và (2) => a.(a-1).(a+1) chia hết cho 6
Hay \(a.\left(a^2-1\right)\) chia hết cho 6
Tìm số dư khi:
a, 3100 : 7
b, 301293 : 13
Chứng minh:A=1+2+2 mũ 2+2 mũ 3+...+2 mũ 11 chia hết cho 3
2A=21+22+........+212
2A-A=(21+22+........+212)-(1+2+22+...........+211)
A =212-1
A=4095
Chứng minh:A=425 +816 chia hết cho 5 và chia hết cho 10
A = 425 + 816 = 250 + 248 = 248.(22 + 1) = 248.5 = 247.2.5 = 247.10 chia hết cho 5 và cho 10