\(a.\left(a^2-1\right)=a.\left(a-1\right).\left(a+1\right)\)
Vậy đây là tích của 3 số nguyên liên tiếp
Nếu a chẵn thì a chia hết cho 2 => a.(a-1).(a+1) chia hết cho 2
Nếu a lẻ thì a chia 2 dư 1=> a+1 chia hết cho 2=> a.(a-1).(a+1) chia hết cho 2
Vậy a.(a-1).(a+1) chia hết cho 2 với mọi a (1)
Nếu a chia hết cho 3=> a.(a-1).(a+1) chia hết cho 3
Nếu a chia 3 dư 1=> a-1 chia hết cho 3=> a.(a-1).(a+1) chia hết cho 3
Nếu a chia 3 dư 2=> a+1 chia hết cho 3=> a.(a-1).(a+1) chia hết cho 3
Vậy a.(a-1).(a+1) chia hết cho 3 với mọi a (2)
Từ (1) và (2) => a.(a-1).(a+1) chia hết cho 6
Hay \(a.\left(a^2-1\right)\) chia hết cho 6