Những câu hỏi liên quan
Minhchau Trần
Xem chi tiết
Yeutoanhoc
26 tháng 7 2021 lúc 17:47

`(x-1)^2>=0`

`|3y-1|>=0`

`|z+2|>=0`

`=>(x-1)^2+|3y-1|+|z+2|>=0`

Mà đề bài cho =0

`=>{(x-1=0),(3y-1=0),(z+2=0):}`

`=>{(x=1),(y=1/3),(z=-2):}`

Vậy `x=1` và `y=1/3` và `z=-2`

Bình luận (1)
Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 22:02

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\left|3y-1\right|\ge0\forall y\)

\(\left|z+2\right|\ge0\forall z\)

Do đó: \(\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\3y-1=0\\z+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{3}\\z=-2\end{matrix}\right.\)

Bình luận (0)
Nguyễn Minh Huy
Xem chi tiết
Stepht Chim Ry
Xem chi tiết
Vũ Hân
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết
Akai Haruma
20 tháng 6 2019 lúc 18:01

Lời giải:

Áp dụng PP tìm điểm rơi và BĐT Cauchy cho các số dương:

\(x^3+\left(\frac{\sqrt{2}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3+\left(\frac{\sqrt{2}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3\geq 3x\left(\frac{\sqrt{2}}{2\sqrt{2}+3\sqrt{3}+1}\right)^2\)

\(y^3+\left(\frac{\sqrt{3}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3+\left(\frac{\sqrt{3}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3\geq 3y\left(\frac{\sqrt{3}}{2\sqrt{2}+3\sqrt{3}+1}\right)^2\)

\(z^3+\left(\frac{1}{2\sqrt{2}+3\sqrt{3}+1}\right)^3+\left(\frac{1}{2\sqrt{2}+3\sqrt{3}+1}\right)^3\geq 3z\left(\frac{1}{2\sqrt{2}+3\sqrt{3}+1}\right)^2\)

Cộng theo vế:

\(P+\frac{2}{(2\sqrt{2}+3\sqrt{3}+1)^2}\geq \frac{3}{(2\sqrt{2}+3\sqrt{3}+1)^2}(2x+3y+z)=\frac{3}{(2\sqrt{2}+3\sqrt{3}+1)^2}\)

\(\Rightarrow P\geq \frac{1}{(2\sqrt{2}+3\sqrt{3}+1)^2}\)

Vậy \(P_{\min}=\frac{1}{(2\sqrt{2}+3\sqrt{3}+1)^2}\)

Bình luận (0)
doan ngoc mai
Xem chi tiết
Đức Nguyễn Ngọc
31 tháng 5 2016 lúc 16:10

P=19/8

Bình luận (0)
doan ngoc mai
31 tháng 5 2016 lúc 20:24

giải rõ ra mới biết

Bình luận (0)
l҉o҉n҉g҉ d҉z҉
26 tháng 6 2021 lúc 10:42

*số thực dương

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(P=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{\frac{1}{16}}{x}+\frac{\frac{1}{4}}{y}+\frac{1}{z}\ge\frac{\left(\frac{1}{4}+\frac{1}{2}+1\right)^2}{x+y+z}=\frac{\frac{49}{16}}{1}=\frac{49}{16}\)

Đẳng thức xảy ra <=> \(\frac{\frac{1}{4}}{x}=\frac{\frac{1}{2}}{y}=\frac{1}{z}=\frac{\frac{1}{4}+\frac{1}{2}+1}{x+y+z}=\frac{\frac{7}{4}}{1}=\frac{7}{4}\Rightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
Kudo Shinichi
Xem chi tiết
 
10 tháng 3 2019 lúc 22:01

Tham khảo lời giải tải đây nha : http://123link.vip/TJMUnni

Bình luận (0)
Cold Boy
13 tháng 3 2019 lúc 21:31

v cả tham khảo =.=

Bình luận (0)
Nguyễn Thị Thanh Trang
Xem chi tiết
Nguyễn Thị Thanh Trang
Xem chi tiết
Trần Thanh Phương
16 tháng 8 2019 lúc 11:29

Tham khảo tại đây: Câu hỏi của dbrby - Toán lớp 10 | Học trực tuyến

Bình luận (0)