Lời giải:
Áp dụng PP tìm điểm rơi và BĐT Cauchy cho các số dương:
\(x^3+\left(\frac{\sqrt{2}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3+\left(\frac{\sqrt{2}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3\geq 3x\left(\frac{\sqrt{2}}{2\sqrt{2}+3\sqrt{3}+1}\right)^2\)
\(y^3+\left(\frac{\sqrt{3}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3+\left(\frac{\sqrt{3}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3\geq 3y\left(\frac{\sqrt{3}}{2\sqrt{2}+3\sqrt{3}+1}\right)^2\)
\(z^3+\left(\frac{1}{2\sqrt{2}+3\sqrt{3}+1}\right)^3+\left(\frac{1}{2\sqrt{2}+3\sqrt{3}+1}\right)^3\geq 3z\left(\frac{1}{2\sqrt{2}+3\sqrt{3}+1}\right)^2\)
Cộng theo vế:
\(P+\frac{2}{(2\sqrt{2}+3\sqrt{3}+1)^2}\geq \frac{3}{(2\sqrt{2}+3\sqrt{3}+1)^2}(2x+3y+z)=\frac{3}{(2\sqrt{2}+3\sqrt{3}+1)^2}\)
\(\Rightarrow P\geq \frac{1}{(2\sqrt{2}+3\sqrt{3}+1)^2}\)
Vậy \(P_{\min}=\frac{1}{(2\sqrt{2}+3\sqrt{3}+1)^2}\)