Ta có đánh giá: \(\frac{1}{x^2+x}\ge\frac{5-3x}{4}\) \(\forall x>0\)
Thật vậy, BĐT tương đương:
\(\Leftrightarrow4\ge\left(x^2+x\right)\left(5-3x\right)\)
\(\Leftrightarrow3x^3-2x^2-5x+4\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left(3x+4\right)\ge0\) (luôn đúng \(\forall x>0\))
Tương tự ta có: \(\frac{1}{y^2+y}\ge\frac{5-3y}{4}\) ; \(\frac{1}{z^2+z}\ge\frac{5-3z}{4}\)
Cộng vế với vế: \(P\ge\frac{15-3\left(x+y+z\right)}{4}=\frac{15-9}{4}=\frac{3}{2}\)
\(P_{min}=\frac{3}{2}\) khi \(x=y=z=1\)