Đề bài sai, cho \(x=y=z=\frac{1}{3}\) thì \(VT=6\) ; \(VP>19\)
Đề bài sai, cho \(x=y=z=\frac{1}{3}\) thì \(VT=6\) ; \(VP>19\)
Cho x,y,z là các số thực dương thỏa mãn:x+y+z=3.Tìm GTNN P=\(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\)
Cho x,y,z là các số thực dương thỏa mãn:xy+yz+zx=1.CMR:\(\frac{1}{1+xy+z^2}+\frac{1}{1+yz+x^2}+\frac{1}{1+zx+y^2}\)≤\(\frac{9}{5}\)
Cho x,y,z là các số thực dương thỏa mãn:2x+3y+z=1.Tìm GTNN của biểu thức P=\(x^3+y^3+z^3\)
Cho các số thực dương x, y, z thỏa mãn x+y+z\(=\)3.
Tìm giá trị nhỏ nhất của biểu thức P \(=\)\(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\).
Cho x, y, z là 3 số dương thỏa mãn x+y+z-4=0. Chứng minh rằng:
(x+y)(y+z)(z+x)>=x^3×y^3×z^3.
Cho x,y,z là các số thực không âm thỏa mãn:\(x^2+y^2+z^2=3\).Tìm GTLN P=xy+yz+zx+\(\frac{5}{x+y+z}\)
Cho các số thực x, y, z thỏa mãn: \(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\) .
Tính giá trị biểu thức: \(x^{15}+y^{10}+z^{2018}\).
Mình đang rất gấp, ai giúp mình với,,,
cho x,y,z>0 ,x2+y2=z2thỏa mãn\(\left[z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\right]^2\)=8.cmr:x=y
1. Cho 3 số dương x, y, z thỏa mãn x+y+z=1. TÌM GTNN của biểu thức: A=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
2. Cho a, b,c>0 và a+b+c=3. Tìm GTNN của biểu thức S=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).
3. CHo x,y,z là 3 số thực dương thỏa mãn đk: x+y+z≤ 6.
CM: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) ≥ \(\frac{3}{2}\).
4. Cho 4 số dương a, b,c, d . CMR \(a^4+b^4+c^4+d^4\) ≥ 4abcd.