a ,Tính \(A=\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)
b, Cho a,b,c \(\ne\) 0 thỏa mãn a+b+c=0
CMR: \(M=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=0\)
c, Cho biểu thức :
\(B=\dfrac{y}{\left(x-y\right)\left(y-z\right)}+\dfrac{z}{\left(y-z\right)\left(z-x\right)}+\dfrac{x}{\left(z-x\right)\left(x-y\right)}\)
CMR : Giá trị bth B không phụ thuộc vào giá trị của biến
Cho x,y,z # 0 và\(\dfrac{x-y-z}{x}=\dfrac{y-x-z}{y}=\dfrac{-x-y+z}{z}\)
Tính A =\(\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{z}{y}\right)\left(1+\dfrac{x}{z}\right)\)
CHO xyz=1. TÍNH \(E=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2+\left(z+\dfrac{1}{z}\right)^2-\left(x+\dfrac{1}{x}\right)\left(x+\dfrac{1}{y}\right)\left(z+\dfrac{1}{z}\right)\)
Cho\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính:
\(C=\left(\dfrac{x^2+y^2}{x^2y^2}-z^2\right)\left(\dfrac{y^2+z^2}{y^2z^2}-x^2\right)\left(\dfrac{z^2+x^2}{z^2x^2}-y^2\right)\)
Cho các số x, y, z dương thỏa mãn: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3\)
Cmr: \(\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2y+z+x\right)^2}+\dfrac{1}{\left(2z+x+y\right)^2}\ge\dfrac{3}{16}\)
Cho x,y,z là các số thực khác 0 và thỏa mãn
A=\(\left\{{}\begin{matrix}x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{z}+\dfrac{1}{x}\right)z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\\x^3+y^3+z^3=1\end{matrix}\right.\)
Tính giá trị của A=\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
Bài 1: tính
a,\(\dfrac{1}{x^2-x}+\dfrac{2x}{4x^3}-\dfrac{1}{x^2+x+1}\)
b,\(\dfrac{1}{x^2-x+1}+1-\dfrac{x^2+2}{x^3+1}\)
c,\(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}+\dfrac{1}{y\left(y-z\right)\left(y-x\right)}+\dfrac{1}{z\left(z-x\right)\left(z-y\right)}\)
Tính:
\(\dfrac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\dfrac{y^2-xz}{\left(y+z\right)\left(y+x\right)}+\dfrac{z^2-xy}{\left(z+x\right)\left(z+y\right)}\)
\(\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^2}{\left(y-x\right)\left(y-z\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)}\)
cho các số thực dương x,y,x thỏa mãn x+y≤z. CMR: \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\ge\dfrac{27}{2}\)